Answer:
Explanation:
r(t) = A(cos wt i + sin wt f)
= A cos wt i + A sin wt j
x = A cos wt
y = A sin wt
radius r
r² = x² + y² ( This is equation of a circle with radius r )
= A² cos² wt +A² sin² wt
= A²
r = A
radius r = A
b )
speed = dr/dt
v = - Aw sinwt i + Aw coswt j
magnitude of velocity
I v I= Aw √(sin²wt + cos²wt)
= Aw ( constant )
acceleration
= dv / dt = - Aw² cos wt - Aw² sinwt
magnitude of acceleration
I a I = Aw²
= r w²
d ) centripetal force = m acceleration
m w² A
=
Answer:

Given:
Initial speed (u) = 22 m/s
Final speed (v) = 0 m/s (Rest)
Time taken (t) = 4 seconds
To Find:
Distance travelled by car (s)
Explanation:
From equation of motion of object moving with uniform acceleration in straight line we have:

By substituting value of v, u & t in the equation we get:


Distance travelled by car (s) = 44 m
Answer:

Explanation:
Acceleration is given by

where
u is the initial velocity
v is the final velocity
t is the time interval
In this problem:
is the initial velocity
is the final velocity
t = 2 s is the time
Substituting, we find the acceleration:

I would think it's generated by thermal motion of charged particles in matter
We use kinematic equation of motion,

Here, s is distance traveled, u is the initial velocity, t is time taken and g is acceleration due to gravity.
Given,
.
We take,
because stone has no initial velocity.
Therefore,

Thus, the height of cliff is approximately 61.75 m.