Answer:
The ground state configuration is the lowest energy, most stable arrangement. An excited state configuration is a higher energy arrangement (it requires energy input to create an excited state). Valence electrons are the electrons utilised for bonding.
or the
FIGURE 5.9 The arrow shows a second way of remembering the order in which sublevels fill. Table 5.2 shows the electron configurations of the elements with atomic numbers 1 through 18.
Element Atomic number Electron configuration
sulfur 16 1s22s22p63s23p4
chlorine 17 1s22s22p63s23p5
argon 18 1s22s22p63s23p6
or the
Two electrons
Two electrons fill the 1s orbital, and the third electron then fills the 2s orbital. Its electron configuration is 1s22s1.
Explanation:
<em>Choose </em><em>your </em><em>answer </em>
<em>brainlilest </em><em>me</em>
<em><u>CARRY </u></em><em><u>ON </u></em><em><u>LEARNING</u></em>
Answer:
X 154
Check solution in explanation
Explanation:
Average atomic mass = ( mass 1× abudance) + ( mass 2× abudance)+ ( mass 3× abudance) / 100
(149×13.8)+(152×44.9) +(154×41.3)/100
2056.2 + 6824.8 + 6360.2/100
=152.412
Answer:
For most of its active life, a star shines due to thermonuclear fusion of hydrogen into helium in its core, releasing energy that traverses the star's interior and then radiates into outer space. At the end of a star's lifetime, its core becomes a stellar remnant : a white dwarf , a neutron star , or, if it is sufficiently massive, a black hole .
Explanation:
An atom is the smallest particle that can have the properties of a compound.
Answer:
15
Explanation:
Magnesium Acetate Mg(C2H3O2)2
Number of atoms:
Carbon = 4
Hydrogen = 6
Magnesium = 1
Oxygen = 4
Total = 15