Answer:
Hiii how are you <u>doing?</u><u>?</u><u>I </u><u>don't</u><u> </u><u>understand</u><u> </u><u>that</u>
Answer:
The particle’s velocity is -16.9 m/s.
Explanation:
Given that,
Initial velocity of particle in negative x direction= 4.91 m/s
Time = 12.9 s
Final velocity of particle in positive x direction= 7.12 m/s
Before 12.4 sec,
Velocity of particle in negative x direction= 5.32 m/s
We need to calculate the acceleration
Using equation of motion


Where, v = final velocity
u = initial velocity
t = time
Put the value into the equation


We need to calculate the initial speed of the particle
Using equation of motion again


Put the value into the formula


Hence, The particle’s velocity is -16.9 m/s.
Are there options? because there is 2 things im thinking of
Answer:
The strategy we would like you to learn has five major steps: Focus the Problem, Physics Description, Plan a Solution, Execute the Plan, and Evaluate the Solution. Let's take a detailed look at each of these steps and then do an sample problem following the strategy.
Answer:
100 newtons
Explanation:
Given,
Jamal pushing a large box by a force, F = 100 N
Work done on the large box is, W = 0
It is because the applied force is less than the force of the friction between the two surfaces.
Yet, there will be a force that is exerted by the large box on Jamal.
According to newton's third law of motion, every action has an equal and opposite reaction. The reaction force is in the direction opposite to the force of action. But, their magnitude remains the same.

Hence, If the action force is 100 N, then the reaction force should be in 100 N