Answer:
Disruption to electricity power grid
Explanation:
We're looking a a solar flare. This will whip solar particles at high velocity into space and, If they are near earth, will interact with the earth's magnetic field. These magnetic changes will be measurable in the electric grid. Whether they are strong enough to cause "disruption" depends on a huge number of factors such as strength of and angles of the interacting magnetic fields and location of grid infrastructure,
Answer: hello some part of your question is missing attached below is the missing detail
answer :
<em>w</em>f = M( v cos∅ )D / I
Explanation:
The Angular speed <em>wf </em>of the system after collision in terms of the system parameters and I can be expressed as
considering angular momentum conservation
Li = Lf
M( v cos∅ ) D = ( ML^2 / 3 + mD^2 ) <em>w</em>f
where ; ( ML^2 / 3 + mD^2 ) = I ( Inertia )
In terms of system parameters and I
<em>w</em>f = M( v cos∅ )D / I
Hello!
To answer your question, salt is a compound!
It is the product of the chemical bond between Na (Sodium) and Cl (Chloride),
Hopes this help you with your question.
D. Gravitational potential
Before solving this question, first we have to understand the special theory of relative.
As per classical mechanics, the velocity of light will be different in different frame of reference. The light moves in the ether medium which exists every where in the entire universe.
Let us consider a body which moves with a velocity v. Let light is coming along the direction of the body. As per classical mechanics,the velocity of light with respect to the body will be [ c-v].
Let us consider that light is coming from opposite direction. Hence, the velocity of light with respect to the observer will be c+v.
From above we see that velocity of light is different in both the cases which is wrong.
As per Einstein's special theory of relativity, the velocity of light will be same in every frame of reference i.e c=300000 km/s.
As per the question ,the space craft is moving with a velocity 0.1 c.
We are asked to calculate the velocity of the light with respect to an observer present in Mars.
Considering Einstein's theory of relativity, the velocity of light will be c [300000 km/s] with respect to the person in Mars.