Answer: 0.049 mol
Explanation:
1) Data:
n₁ = 0.250 mol
p₁ = 730 mmHg
p₂ = 1.15 atm
n₂ - n₁ = ?
2) Assumptions:
i) ideal gas equation: pV = nRT
ii) V and T constants.
3) Solution:
i) Since the temperature and the volume must be assumed constant, you can simplify the ideal gas equation into:
pV = nRT ⇒ p/n = RT/V ⇒ p/n = constant.
ii) Then p₁ / n₁ = p₂ / n₂
⇒ n₂ = p₂ n₁ / p₁
iii) n₂ = 1.15atm × 760 mmHg/atm × 0.250 mol / 730mmHg = 0.299 mol
iv) n₂ - n₁ = 0.299 mol - 0.250 mol = 0.049 mol
Explanation:
The buoyant force must be greater to float, otherwise it would sink, its like a barrel in water, the more water weight in it the more it sinks, the more air weight the more it rises.
Galileo discovered during his inclined-plane experiments that a ball rolling down an incline and onto a horizontal surface would roll indefinitely.
'Universe' means 'Everything'. That is, all matter, all space, all time.
chromatic aberration problem do refractor telescopes have that reflectors don't
<u>Explanation:</u>
Chromatic aberration is a phenom in which light rays crossing through a lens focus at various points, depending on their wavelength. Chromatic aberration is a dilemma in which lens or refracting, telescopes undergo from. The various image distances for the respective colors affect various image sizes for them.
This involves the creation of disturbing color fringes in the image. Chromatic aberration can be pretty well adjusted by the use of an achromatic doublet. Here, a positive biconvex lens is coupled with a negative lens placed backward with greater dispersion. Thus partly compensates for the chromatic aberration.