The famous formula E=mc^2 really says that mass and energy are the same thing, but measured in different units. So the separate laws of conservation- one for mass and the other for energy- are now merged into one law.
Einstein's theory of special relativity (1905) shows that matter (as mass) and energy can be converted into each other according to the famous equation E = mc2, where E is energy, m is mass, and c is the speed of light.
<em>Hope</em><em> </em><em>It</em><em> </em><em>helps</em><em> </em><em>you</em><em>.</em>
Answer:
209.3 Joules require to raise the temperature from 10 °C to 15 °C.
Explanation:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m × c × ΔT
Given data:
mass of water = 10 g
initial temperature T1= 10 °C
final temperature T2= 15 °C
temperature change =ΔT= T2-T1 = 15°C - 10°C = 5 °C
Energy or joules added to increase the temperature Q = ?
Solution:
We know that specific heat of water is 4.186 J/g .°C
Q = m × c × ΔT
Q = 10 g × 4.186 J/g .°C × 5 °C
Q = 209.3 J
It’s b make contact with the heat source
The correct answer that would best complete the given statement above would be option 2. <span>The relationship between molecular velocities and temperature is a direct relationship. In other words, their relationship is directly proportional. Hope that this is the answer that you are looking for. </span>
Answer:
This is not a question but if it is a true or falso statement this is true.
Explanation: