Answer:
The mass of a system does not change during a chemical reaction
Explanation:
Correct Answers
Answer:
The number of moles of benzaldehyde = 0.0253 moles
Explanation:
The molecular formula of benzaldehyde is C₇H₆O
Its molecular mass is calculated from the atomic masses of the constituent atoms.
C = 12.0 g: H = 1.0 g; O = 16.0 g
Molecular mass = ( 12 * 7) + (1 * 6) + (16 * 1) = 106.0 g/mol
Number of moles of substance = mass of substance/ molar mass of the substance
mass of benzaldehyde = 2.68; molar mass = 106.0 g/mol
Number of moles of benzaldehyde = 2.68 g/ 106 g/mol = 0.0253 moles
Therefore, the number of moles of benzaldehyde = 0.0253 moles
Answer:
8.2 x 106^-11
Explanation:
To begin this problem you must remember the basic rule of scientific notation, which is, must be between 1-10. .000000000082 is much smaller than 1. However by moving the decimal 11 spots to the right, we can make it 8.2
Continue to move the decimal to the right until the value is in the 1-10 range. Make sure to count the moves to the right.
Once the decimal is in the right spot count the spots moved.
Since the number is wayyy smaller than the answer given the number will be negative 10^-11, in order to make it what is was before.
2H(+) + SO4(2-) + Ca(2+) + 2I(-) -> CaSO4(s) + 2H(+) + 2I(-)
The signs in brackets are the subscripts for the charge of the ion. This is the complete ionic equation. The net ionic equation is:
Ca(2+) + SO4(2-) -> CaSO4
Answer:
Mass: 981.0 g
Density: 5.61 g/cm^3
Hardness: = 2.5 - 3
Unknown material: Chalcocite
Explanation: