Rearranging formulas is all about simple algebra rules. Just like when solving for x in an equation, you're just isolating whichever variable you want. I'll work this one out for you and hopefully it'll help, but if you need more explanation, then feel free to comment!
D = ViT + 0.5at² Subtract ViT from both sides
D - ViT = 0.5at² Divide both sides by 0.5t²
I wrote this step out a little more to show how your fraction will cancel
= a I like to flip these around so the single variable is on the right
a = 
Answer:
When an electric current flows, the shape of the magnetic field is very similar to the field of a bar magnet
Explanation:
Point A has the largest magnitude of acceleration as compared to other points on the position verses time graph.
On the graph, A is the point where magnitude of the acceleration of the particle is greatest as compared to other positions on the graph because the height of point A is the largest as compared to other points of the graph.
The graph shows at which point acceleration of an object is higher and lower so we can conclude that point A has the largest magnitude of acceleration as compared to other points on the position verses time graph.
Learn more about acceleration here: brainly.com/question/933224
Learn more: brainly.com/question/25887663
Electrical energy is your answer.
Answer: a) 274.34 nm; b) 1.74 eV c) 1.74 V
Explanation: In order to solve this problem we have to consider the energy balance for the photoelectric effect on tungsten:
h*ν = Ek+W ; where h is the Planck constant, ek the kinetic energy of electrons and W the work funcion of the metal catode.
In order to calculate the cutoff wavelength we have to consider that Ek=0
in this case h*ν=W
(h*c)/λ=4.52 eV
λ= (h*c)/4.52 eV
λ= (1240 eV*nm)/(4.52 eV)=274.34 nm
From this h*ν = Ek+W; we can calculate the kinetic energy for a radiation wavelength of 198 nm
then we have
(h*c)/(λ)-W= Ek
Ek=(1240 eV*nm)/(198 nm)-4.52 eV=1.74 eV
Finally, if we want to stop these electrons we have to applied a stop potental equal to 1.74 V . At this potential the photo-current drop to zero. This potential is lower to the catode, so this acts to slow down the ejected electrons from the catode.