1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Snezhnost [94]
9 months ago
14

What is the force of gravity between two 50.0kg masses that are separated by 0.300m?3.71x10-8N5.59x10-7N2.78x104N1.85x10-6N

Physics
1 answer:
Varvara68 [4.7K]9 months ago
7 0

We will have the following:

\begin{gathered} F=G\frac{m_1m_2}{r^2}\Rightarrow F=\frac{(6.67\ast10^{-11}m^3\ast kg^{-1}\ast s^{-2})(50kg)(50kg)}{(0.3m)^2} \\  \\ \Rightarrow F=1.852777778...\ast10^{-6}N\Rightarrow F\approx1.85\ast10^{-6}N \end{gathered}

So, the force is approximately 1.85*10^-6 N.

You might be interested in
A mule pulls a cart of milk 10 meters with a force of 50 Newton's.Calculate the work done by a mule
san4es73 [151]

Work = Force x Distance

Assuming that this work is being done parallel to the displacement that is, but under that assumption:

W = (50)(10)

W = 500 J

8 0
3 years ago
Read 2 more answers
A 0.150 kg baseball has 118 j of KE. how fast is the ball moving?(unit=m/s)
MrRissso [65]

Answer:

Explanation 118 = (1/2) * 0.15 * v² 118 = 0.075 * v² v² = 1573.33 m/s ... since KE = m/2*V^2 , then : V = √2KE/m = √20*118/1.5 = 39.67 m//sec ( 142.8 km/h ; 88.75 mph).:

4 0
3 years ago
A skydiver of 75 kg mass has a terminal velocity of 60 m/s. At what speed is the resistive force on the skydiver half that when
ankoles [38]

Answer:

The speed of the resistive force is 42.426 m/s

Explanation:

Given;

mass of skydiver, m = 75 kg

terminal velocity, V_T = 60 \ m/s

The resistive force on the skydiver is known as drag force.

Drag force is directly proportional to square of terminal velocity.

F_D = kV_T^2

Where;

k is a constant

k = \frac{F_D_1}{V_{T1}^2} = \frac{F_D_2}{V_{T2}^2}

When the new drag force is half of the original drag force;

F_D_2 = \frac{F_D_1}{2} \\\\\frac{F_D_1}{V_{T1}^2} = \frac{F_D_2}{V_{T2}^2} \\\\\frac{F_D_1}{V_{T1}^2} = \frac{F_D_1}{2V_{T2}^2} \\\\\frac{1}{V_{T1}^2} = \frac{1}{2V_{T2}^2}\\\\2V_{T2}^2 = V_{T1}^2\\\\V_{T2}^2= \frac{V_{T1}^2}{2} \\\\V_{T2}= \sqrt{\frac{V_{T1}^2}{2} } \\\\V_{T2}=  \frac{V_{T1}}{\sqrt{2} } \\\\V_{T2}=  0.7071(V_{T1})\\\\V_{T2}= 0.7071(60 \ m/s)\\\\V_{T2}= 42.426 \ m/s

Therefore, the speed of the resistive force is 42.426 m/s

8 0
3 years ago
The drawing shows a person (weight W = 588 N, L1 = 0.838 m, L2 = 0.398 m) doing push-ups. Find the normal force exerted by the f
zhenek [66]

Complete Question

The complete question is shown on the first uploaded image

Answer:

Force on each hand is 196.22 N

Force on each foot is 95.8 N

Explanation:

In order to get a better understanding of this question let us explain some concepts

Normal Force:

We can define normal force Fn as that type of force which makes a 90 degree angle with the surface on which it is exerted.

Torque:

We can define torque as the moment of forces that tends to produce or cause rotation

From the question we are given that

Weight of body is (W) = 584 N

The normal force on both hands (Ha) = ?

The normal force on both legs (Lg) = ?

Looking at the diagram the person is at equilibrium so

                 584 = Ha + Lg

an also this mean that torques acting on the body is balanced

         So,   0.410 Ha  = 0.840 Lg

    Making Lg the subject of formula in the equation above we

   Lg = 0.4881 Ha

 Considering the first equation and replacing Lg with this recent equation we have

                      584 = Ha + 0.4881 Ha

          Therefore Ha = 392.44 N

This value obtained is  for both hands for each hand we divide by 2

Therefore we have for each hand = 392.44/2 =196.55 N

Since we have been able to get the force on both hands we can substitute it in to the equation where we made Lg the subject of formula and we have

             Lg = 0.4881 ×  392.44

                  = 191.22 N

The value above is the force on both legs to obtain the force on each leg we have

                  191.22/2 = 95.8 N.

8 0
3 years ago
What is the resistance in a circuit that carries a 0.75 A current when powered by a 1.5 V battery?
olga2289 [7]
The formula to use is: I = (<span> ΔV / R )
Once you solve for R, your new formula would be: R= (</span><span> ΔV / I ) 
Plug in your values to get: R = (1.5V / .75A )
Finally, R = 2</span><span>Ω</span>
8 0
3 years ago
Read 2 more answers
Other questions:
  • A stone tumbles into a mine shaft and strikes bottom after falling for 4.2 second how deep is the mine shaft
    5·1 answer
  • Birds, squirrels, and chipmunks all living in the same tree, using the same resources, are an example of:
    8·1 answer
  • A stopwatch is used to measure how long it takes a sprinter to run 100 meters. this stopwatch measures time intervals to hundred
    9·1 answer
  • A 60 kg student is standing atop a spring in an elevator that is accelerating upward at 3.0 m/s2. The spring constant is 2.5 x 1
    13·1 answer
  • O ln a hydraulic press , a force Of 400 N is exerted on
    8·1 answer
  • Desert climates can have very hot days and very cold nights. This is because _____.
    5·2 answers
  • The temperature measurement scale that begins at absolute zero is
    15·2 answers
  • Assume this piston has a maximum pressure rating of 2.5 pounds-force per square inch [psi]. The force applied to the cylindrical
    5·1 answer
  • The negatively charged particle in an atom is a(n):
    12·1 answer
  • A mechanical wave is created when a source of energy causes _____.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!