You can eliminate the answer A because the moon is super cold
For answer B, atmosphere is contained of gasses, not just oxygen alone
Definitely not C
The answer is D because the moon's gravity isn't strong enough to hold the gasses, as a result, only a small amount of gasses has an attraction to it ( the moon has a little atmosphere though) but not enough to be considered
Answer:
a = v²/r
Explanation:
The acceleration of a body moving in a circular path is known as the centripetal acceleration. This is the acceleration of a body that keeps the body within the circular path. It is written in terms of the linear velocity v and the radius of the circle of rotation as shown;
a = v²/r where
v is the linear velocity
r is the radius
a is the centripetal acceleration
Answer:
<h2>The answer is 12 m</h2>
Explanation:
The distance covered by an object given it's velocity and time taken can be found by using the formula
distance = velocity × time
From the question we have
distance = 2 × 6
We have the final answer as
<h3>12 m</h3>
Hope this helps you
<h3><u>Question: </u></h3>
The equation for the speed of a satellite in a circular orbit around the Earth depends on mass. Which mass?
a. The mass of the sun
b. The mass of the satellite
c. The mass of the Earth
<h3><u>Answer:</u></h3>
The equation for the speed of a satellite orbiting in a circular path around the earth depends upon the mass of Earth.
Option c
<h3><u>
Explanation:
</u></h3>
Any particular body performing circular motion has a centripetal force in picture. In this case of a satellite revolving in a circular orbit around the earth, the necessary centripetal force is provided by the gravitational force between the satellite and earth. Hence
.
Gravitational force between Earth and Satellite: 
Centripetal force of Satellite :
Where G = Gravitational Constant
= Mass of Earth
= Mass of satellite
R= Radius of satellite’s circular orbit
V = Speed of satellite
Equating
, we get
Speed of Satellite 
Thus the speed of satellite depends only on the mass of Earth.