Finding out the acceleration 12/3 = 4m/s^2
thus it is descending so the actual acceleration would be 9.8-4 = 5.8 m/s^2
the weight will be 90*5.8 = 522 N
522/9.8 = 53.2 kg
Your answer would be A):Organize a laboratory in Germany.
Answer:
The mass of the other worker is 45 kg
Explanation:
The given parameters are;
The gravitational potential energy of one construction worker = The gravitational potential energy of the other construction worker
The mass of the lighter construction worker, m₁ = 90 kg
The height level of the lighter construction worker's location = h₁
The height level of the other construction worker's location = h₂ = 2·h₁
The gravitational potential energy, P.E., is given as follows;
P.E. = m·g·h
Where;
m = The mass of the object at height
g = The acceleration due to gravity
h = The height at which is located
Let P.E.₁ represent the gravitational potential energy of one construction worker and let P.E.₂ represent the gravitational potential energy of the other construction worker
We have;
P.E.₁ = P.E.₂
Therefore;
m₁·g·h₁ = m₂·g·h₂
h₂ = 2·h₁
We have;
m₁·g·h₁ = m₂·g·2·h₁
m₁ = 2·m₂
90 kg = 2 × m₂
m₂ = (90 kg)/2 = 45 kg
The mass of the other construction worker is 45 kg.
Answer:
Part of the question is missing but here is the equation for the function;
Consider the equation v = (1/3)zxt2. The dimensions of the variables v, x, and t are [L/T], [L], and [T] respectively.
Answer = The dimension for z = 1/T3 i.e 1/ T - raised to power 3
Explanation:
What is applied is the principle of dimensional homogenuity
From the equation V = (1/3)zxt2.
- V has a dimension of [L/T]
- t has a dimension of [T]
- from the equation, make z the subject of the relation
- z = v/xt2 where 1/3 is treated as a constant
- Substituting into the equation for z
- z = L/T / L x T2
- the dimension for z = 1/T3 i.e 1/ T - raised to power 3