Answer:
A) ≥ 325Kpa
B) ( 265 < Pe < 325 ) Kpa
C) (94 < Pe < 265 )Kpa
D) Pe < 94 Kpa
Explanation:
Given data :
A large Tank : Pressures are at 400kPa and 450 K
Throat area = 4cm^2 , exit area = 5cm^2
<u>a) Determine the range of back pressures that the flow will be entirely subsonic</u>
The range of flow of back pressures that will make the flow entirely subsonic
will be ≥ 325Kpa
attached below is the detailed solution
<u>B) Have a shock wave</u>
The range of back pressures for there to be shock wave inside the nozzle
= ( 265 < Pe < 325 ) Kpa
attached below is a detailed solution
C) Have oblique shocks outside the exit
= (94 < Pe < 265 )Kpa
D) Have supersonic expansion waves outside the exit
= Pe < 94 Kpa
The magnitude of the acceleration of the ball while coming to rest is 477.43 m/s²
The direction of the acceleration of the ball is downwards
The given parameters
initial velocity of the ball, u = 0
height above the ground, h = 2.2 m
time of motion of the ball, t = 96 ms = 0.096 s
The magnitude of the acceleration of the ball while coming to rest is calculated as;
let the downwards direction of the acceleration be positive

The direction of the acceleration of the ball is downwards
Learn more here: brainly.com/question/15407740
False. They are arranged in a structure called a crystal lattice
In 1920, after returning from Army service, he produced a successful model and in 1923 turned it over to the Northeast Electric Company of Rochester for development.
The answer would be D because is the strongest form of radiation