Answer:
- path differnce = 2.18*10^-6
- 1538 lines
Explanation:
- The path difference for the waves that produce the pattern of diffraction, is given by the following formula:
(1)
d: separation between slits = 0.50mm = 0.50*10^-3 m
θ: angle of a diffraction = 0.25°
Then, the path difference is:

- The maximum number of bright lines are calculated by using the following formula:
(2)
m: order of the bright
λ: wavelength = 650nm
The maximum bright is calculated for an angle of 90°:

The maxium number of bright lines are twice the previous result, that is, 1538 lines
Your answer is correct. No problem and Have a nice day
B) 14.0 N
The way to solve this problem is to determine the kinetic energy the box had before and after the rough patch of floor. The equation for kinetic energy is:
E = 0.5 M V^2
where
E = Energy
M = Mass
V = velocity
Substituting the known values, let's calculate the before and after energy.
Before:
E = 0.5 M V^2
E = 0.5 13.5kg (2.25 m/s)^2
E = 6.75 kg 5.0625 m^2/s^2
E = 34.17188 kg*m^2/s^2 = 34.17188 joules
After:
E = 0.5 M V^2
E = 0.5 13.5kg (1.2 m/s)^2
E = 6.75 kg 1.44 m^2/s^2
E = 9.72 kg*m^2/s^2 = 9.72 Joules
So the box lost 34.17188 J - 9.72 J = 24.451875 J of energy over a distance of 1.75 meters. Let's calculate the loss per meter by dividing the loss by the distance.
24.451875 J / 1.75 m = 13.9725 J/m = 13.9725 N
Rounding to 1 decimal place gives 14.0 N which matches option "B".
Answer:
electrons are NEGATIVE not POSITIVE ionic bond
Explanation: