1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LUCKY_DIMON [66]
3 years ago
14

You are coasting on your 12-kg bicycle at 13 m/s and a 5.0-g bug splatters on your helmet. The bug was initially moving at 1.5 m

/s in the same direction as you. If your mass is 70 kg, answer the following questions:a.What is the initial momentum of you plus your bicycle? b.What is the intial momentum of the bug? c.What is your change in velocity due to the collision the bug? d.What would the change in velocity have been if the bug were traveling in the opposite direction?
Physics
2 answers:
Brut [27]3 years ago
7 0

Answer:

a) Pi,c = 1066 kgm/s

b) Pi,b = 0.0075 kgm/s  

c) ΔV = - 0.0007 m/s

d) ΔV = - 0.0008 m/s

Explanation:

Given:-

- The mass of the bicycle, mc = 12 kg

- The mass of passenger, mp = 70 kg

- The mass of the bug, mb = 5.0 g

- The initial speed of the bicycle, vpi = 13 m/s

- The initial speed of the bug, vbi = 1.5 m/s

Find:-

a.What is the initial momentum of you plus your bicycle?

b.What is the initial momentum of the bug?

c.What is your change in velocity due to the collision the bug?

d.What would the change in velocity have been if the bug were traveling in the opposite direction?

Solution:-

- First we will set our one dimensional coordinate system, taking right to be positive in the direction of bicycle.

- The initial linear momentum (Pi,c) of the passenger and the bicycle would be:

                       Pi,c = vpi* ( mc + mp)

                       Pi,c = 13* ( 12+ 70 )

                       Pi,c = 1066 kgm/s  

- The initial linear momentum (Pi,b) of the bug would be:

                       Pi,b = vbi*mb

                       Pi,b = 0.005*1.5

                       Pi,b = 0.0075 kgm/s  

- We will consider the bicycle, the passenger and the bug as a system in isolation on which no external unbalanced forces are acting. This validates the use of linear conservation of momentum.

- The bicycle, passenger and bug all travel in the (+x) direction after the bug splatters on the helmet.

                       Pi = Pf

                       Pi,c + Pi,b = V*(mb + mc + mp)

Where,    V : The velocity of the (bicycle, passenger and bug) after collision.

                      1066 + 0.0075 = V*( 0.005 + 12 + 70 )

                      V = 1066.0075 / 82.005

                      V = 12.9993 m/s

- The change in velocity is Δv = 13 - 12.9993 =  - 0.00070 m/s      

- If the bug travels in the opposite direction then the sign of the initial momentum of the bug changes from (+) to (-).

- We will apply the linear conservation of momentum similarly.

                      Pi = Pf

                      Pi,c + Pi,b = V*(mb + mc + mp)        

                      1066 - 0.0075 = V*( 0.005 + 12 + 70 )

                      V = 1065.9925 / 82.005

                      V = 12.99911 m/s

- The change in velocity is Δv = 13 - 12.99911 =  -0.00088 m/s      

AnnZ [28]3 years ago
6 0

Answer:

a. The initial momentum of you and your bicycle is 1066 kgm/s.

b. The initial momentum of the bug is 0.0075 kgm/s.

c. The change in velocity due to the collision with the bug is -0.0008 m/s.

d. If the bug were travelling in the opposite direction, the change in velocity due to the collision would have been -0.0009 m/s.

Explanation:

The initial momentum of you and your bicycle can be easily calculated using the definition of momentum:

p=mv\\\\p=(m_{you}+m_{bicycle})v\\\\p=(70kg+12kg)(13m/s)\\\\p=1066kgm/s

So the initial momentum of you plus your bicycle is 1066 kgm/s (a).

The initial momentum of the bug can be obtained in the same way:

p=mv\\\\p=(0.005kg)(1.5m/s)\\\\p=0.0075kgm/s

Then the initial momentum of the bug is 0.0075 kgm/s (b).

Now, since the mass of the bug is much less than your mass, we can think of this as a perfectly inelastic collision. This means that, after the collision, the velocity of you, the bicycle and the bug is the same. From the conservation of linear momentum, we have:

p_0=p_f\\\\(m_{you}+m_{bicycle})v_{you}+m_{bug}v_{bug}=(m_{you}+m_{bicycle}+m_{bug})v_f\\\\v_f=\frac{(m_{you}+m_{bicycle})v_{you}+m_{bug}v_{bug}}{m_{you}+m_{bicycle}+m_{bug}}\\\\v_f=\frac{(70kg+12kg)(13m/s)+(0.005kg)(1.5m/s)}{70kg+12kg+0.005kg}\\ \\v_f=12.9992m/s

As your initial velocity was 13m/s, the change in velocity is of -0.0008 m/s (c).

If the bug were travelling in the opposite direction, its initial velocity would have been negative. So:

v_f=\frac{(70kg+12kg)(13m/s)-(0.005kg)(1.5m/s)}{70kg+12kg+0.005kg}\\ \\v_f= 12.9991m/s

So, in this case the change in velocity is of -0.0009 m/s (d).

Note that the bug is so small that the change in velocity is negligible in most cases. That's why we don't notice when we hit a bug when riding bicycle.

You might be interested in
Energy Transformation
Serjik [45]

Answer:

<em>K =400000 J</em>

Explanation:

<u>Kinetic Energy</u>

Is the energy an object has due to its state of motion. It's proportional to the square of the speed.

The equation for the kinetic energy is:

\displaystyle K=\frac{1}{2}mv^2

Where:

m = mass of the object

v = speed at which the object moves

The kinetic energy is expressed in Joules (J)

The car has a mass of m=2000 Kg and travels at v=20 m/s. Calculating the kinetic energy:

\displaystyle K=\frac{1}{2}2000*20^2

Calculating:

K =400000 J

3 0
3 years ago
"Which of the following is true about the atom shown? Choose all that apply.
aalyn [17]
Option B & Option D is your correct answers.

'cause here, atom has eight electrons in it's valence shell, so it means it has stable structure which falls in group 18

Hope this helps!
8 0
2 years ago
Read 2 more answers
A cement truck of mass 14,000 kg moving 10m/s slams into a wall and comes to a halt in .2s. What is the force of impact on the t
skelet666 [1.2K]

And it’s x10 is 100000

6 0
3 years ago
A car horn emits a frequency of 400 Hz. A car traveling at 20.0 m/s sounds the horn as it approaches a stationary pedestrian. Wh
Temka [501]

Answer:

The observed frequency by the pedestrian is 424 Hz.

Explanation:

Given;

frequency of the source, Fs = 400 Hz

speed of the car as it approaches the stationary observer, Vs = 20 m/s

Based on Doppler effect, as the car the approaches the stationary observer, the observed frequency will be higher than the transmitted (source) frequency because of decrease in distance between the car and the observer.

The observed frequency is calculated as;

F_s = F_o [\frac{v}{v_s + v} ] \\\\

where;

F₀ is the observed frequency

v is the speed of sound in air = 340 m/s

F_s = F_o [\frac{v}{v_s + v} ] \\\\400 = F_o [\frac{340}{20 + 340} ] \\\\400 = F_o (0.9444) \\\\F_o = \frac{400}{0.9444} \\\\F_o = 423.55 \ Hz \\

F₀ ≅ 424 Hz.

Therefore, the observed frequency by the pedestrian is 424 Hz.

8 0
3 years ago
Two loudspeakers emit sound waves along the x-axis. The sound has maximum intensity when the speakers are 20 cm apart. The sound
krek1111 [17]

Answer:

Explanation:

The path length difference = extra distance traveled

The destructive interference condition is:

\Delta d = (m+1/2)\lambda

where m =0,1, 2,3........

So, ←

\Delta d = (m+1/2)\lamb da9/tex]so [tex]\Delta d = \frac{\lambda}{2}

⇒ λ = 2Δd = 2×10 = 20

4 0
2 years ago
Other questions:
  • Which gas is a greenhouse gas?<br><br> nitrogen<br> oxygen<br> carbon dioxide<br> hydrogen
    14·2 answers
  • If an object has a volume of 2.5mL and a mass of 10g than what is the density of an object?
    7·1 answer
  • Prove that..<br>please help<br>​
    7·1 answer
  • Thank you for your help !
    9·1 answer
  • Question 3 of 10
    5·1 answer
  • One alternative to burning non-renwable fuels, which harm the environment, could be to burn:
    11·1 answer
  • Which gland controls the workings of other endocrine glands? Thyroid, pituitary, adrenal, or thymus
    14·2 answers
  • What is the final velocity of an object that is dropped if it falls a distance of 100 m?
    6·1 answer
  • The water drops fall at regular intervals from a tap 5 m above the ground. The third drop is leaving the tap at the instant the
    6·1 answer
  • In a belly-flop diving contest, the winner is the diver who makes the biggest splash upon hitting the water. the size
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!