<h3>
Answer:</h3>
1.93 g
<h3>
Explanation:</h3>
<u>We are given;</u>
The chemical equation;
2C₂H₆(g) + 7O₂(g) → 4CO₂(g) + 6H₂O(l) ΔH = -3120 kJ
We are required to calculate the mass of ethane that would produce 100 kJ of heat.
- 2 moles of ethane burns to produce 3120 Kilo joules of heat
Number of moles that will produce 100 kJ will be;
= (2 × 100 kJ) ÷ 3120 kJ)
= 0.0641 moles
- But, molar mass of ethane is 30.07 g/mol
Therefore;
Mass of ethane = 0.0641 moles × 30.07 g/mol
= 1.927 g
= 1.93 g
Thus, the mass of ethane that would produce 100 kJ of heat is 1.93 g
Based upon Max Planck's theory of black-body radiation, Einstein theorized that the energy in each quantum of light was equal to the frequency multiplied by a constant, later called Planck's constant. A photon above a threshold frequency has the required energy to eject a single electron, creating the observed effect.
Answer:
B
Explanation:
A chemical change occurred, and this caused the liquid’s physical properties to change.
when we read her experiment we can see that color changed to blue, it is because new products are formed. And the temperature cause this.
Answer:
Option B, aspirin’s ester group provides greater digestibility to aspirin
Explanation:
Aspirin ester group has three parts
- carboxylic acid functional group (R-COOH)
- ester functional group (R-O-CO-R')
- aromatic group (benzene ring)
Aspirin is a weak acid and hence it cannot dissolve in water readily. The reaction of Aspirin ester group with water is as follows -
aspirin
(acetylsalicylic acid) + water → salicylic acid + acetic acid
(ethanoic acid)
Aspirin passes through the stomach and remains unchanged until it reaches the intestine where it hydrolyses ester to form the active compound.
Answer:
V₂ = 22.23 mL
Explanation:
According to general gas equation:
P₁V₁/T₁ = P₂V₂/T₂
Given data:
Initial volume = 25 mL
Initial pressure = 725 mmHg (725/760 =0.954 atm)
Initial temperature = 20 °C (20 +273 = 293 K)
Final pressure = standard = 1 atm
Final temperature = standard = 273.15 K
Final volume = ?
Solution:
P₁V₁/T₁ = P₂V₂/T₂
V₂ = P₁V₁ T₂/ T₁ P₂
V₂ = 0.954 atm × 25 mL × 273.15 K / 293 K × 1 atm
V₂ = 6514.63 mL . atm . K / 293 K . atm
V₂ = 22.23 mL