B. It measures <span>changes in the variable that is being controlled
</span>The receptor senses environmental stimuli, sending the information to the integrating center.
Answer:

Explanation:
Given data:
Mass of the man, 
Total mechanical energy, 
Height, 
Suppose there is no external force acting on the man. In this situation, the total mechanical energy (kinetic + potential) will remain steady.
Let the speed of the man at 2.6 m be <em>v</em>.
Thus,




Answer:
in accelerated motion
Explanation: tbh I just guessed if im wrong sorry
W = F x d/x = (m x Ag) x h, therefore, mass (2kg x 9.8) x 2.5m = 49J
Not sure what you mean by "breaks in the tension" but I suspect you mean the rope will come apart if the tension in the rope exceeds 1800 N.
In the free body diagram for the 500 N weight, we have a figure Y with the net force equations
• horizontal net force:
∑ F[hor] = T₁ cos(θ) - T₂ cos(θ) = 0
• vertical net force:
∑ F[ver] = T₁ sin(θ) + T₂ sin(θ) - 500 N = 0
From the first equation, it follows that T₁ = T₂, so I'll denote their magnitude by T alone. From the second equation, we have
2 T sin(θ) = 500 N
and if the maximum permissible tension is T = 1800 N, it follows that
sin(θ) = (500 N) / (3600 N) ⇒ θ = arcsin(5/36) ≈ 7.9°
is the smallest angle the rope can make with the horizontal.