Answer:
V = 3.5 x 10⁻⁶ m³/s = 3.5 cm³/s
Explanation:
The volume flow rate of the blood in the artery can be given by the following formula:

where,
V = Volume flow rate = ?
A = cross-sectional area of artery = πd²/4 = π(0.004 m)²/4 = 1.26 x 10⁻⁵ m²
v = velcoity = 0.28 m/s
Therefore,

<u>V = 3.5 x 10⁻⁶ m³/s = 3.5 cm³/s</u>
Newton's second law is the hardest to describe as it is about momentum (F = ma), and a lot of people don't know the concept of momentum.
Newton's first law of motion:- every object moves in a straight line unless acted upon by a force.
Newton's 2nd law of motion:-the acceleration of an object is directly proportional to the net force exerted and inversely proportional to the item's mass. Newton's 2nd law is a quantitative description of the changes that a force can produce on the motion of a body. It states that the time rate of change of the momentum of a body is equal in both magnitude and direction to the force imposed on it.
Newton's 3rd law of motion:- For every action, there's an equal and opposite reaction.
learn more about Newton's first law of motion here brainly.com/question/10454047
#SPJ4
Force of gravity =mass*graviational acceleration
gravitational acceleration=g=9.81
mass=Density*Volume=.08*7840
force of gravity= .08*7840*9.81
gg
Answer: the mass of the second ball is 2.631 kg
Explanation:
Given that;
m1 = 0.877 kg
Initial velocity = V0
Initial momentum = m1 × V0
final velocity of m1 is u1, final velocity of m2 is u2 = v0/2
now final momentum = m1 × u1 + m2 × u2
using momentum conservation;
m1×V0 = m1×u1 + m2×v0/2
m1×(v0 - u1) = m2×V0/2 ----- let this be equation 1
Now, for elastic collision;
m1×v0²/2 = m1×u1²/2 + m2×(v0/2)²/2
m1×(v0² - u1²) = m2×(v0/2)² --------- let this be equation 2
now; equation 2 / equation 1
: V0 + u1 = v0/2
2V0 + 2u1 = V0
2u1 = V0 - 2V0
u1 = -V0/2
now we insert in equ 1
m1×3V0/2= m2×V0/2
m1 × 3 = m2
m2 = 0.877 × 3
m2 = 2.631 kg
Therefore, the mass of the second ball is 2.631 kg
You need to put more info into the question