Answer:
684J
Explanation:
So basically the formula for gravitational potential energy is Mass X Gravity X height. That is G.p.e = mgh
We don't have the mass but since we have the height, we multiply directly with the height since the quantity of weight is already given.
so G.p.e = 360 X 1.9 = 684J
Note that; The answer is in joules because g.p.e is work done.
Hope that was helpful!!
<span>If the refrigerator weights 1365 and you are not exerting any vertical force on it, then the normal force is also 1365N. so Fn=1365
Fsf = Static frictional force = (coefficient of static friction) * (Normal force)
So the least for you could exert to move it is equal to the Fsf.
Fsf = (0.49)(1365N)</span><span>
</span>
The moment of inertia of a point mass about an arbitrary point is given by:
I = mr²
I is the moment of inertia
m is the mass
r is the distance between the arbitrary point and the point mass
The center of mass of the system is located halfway between the 2 inner masses, therefore two masses lie ℓ/2 away from the center and the outer two masses lie 3ℓ/2 away from the center.
The total moment of inertia of the system is the sum of the moments of each mass, i.e.
I = ∑mr²
The moment of inertia of each of the two inner masses is
I = m(ℓ/2)² = mℓ²/4
The moment of inertia of each of the two outer masses is
I = m(3ℓ/2)² = 9mℓ²/4
The total moment of inertia of the system is
I = 2[mℓ²/4]+2[9mℓ²/4]
I = mℓ²/2+9mℓ²/2
I = 10mℓ²/2
I = 5mℓ²
Answer:
weight
Explanation:
" the greater the pull of gravity on an object, the greater the weight of that object." In physics, weight is measured in newtons (N), the common unit for measuring force.
I think phosphorus has the highest density at room temp.