The power that must be supplied to the motor is 136 hp
<u>Explanation:</u>
Given-
weight of the elevator, m = 1000 lb
Force on the table, F = 500 lb
Distance, s = 27 ft
Efficiency, ε = 0.65
Power = ?
According to the equation of motion:
F = ma

a = 16.1 ft/s²
We know,

To calculate the output power:
Pout = F. v
Pout = 3 (500) * 29.48
Pout = 44220 lb.ft/s
As efficiency is given and output power is known, we can calculate the input power.
ε = Pout / Pin
0.65 = 44220 / Pin
Pin = 68030.8 lb.ft/s
Pin = 68030.8 / 500 hp
= 136 hp
Therefore, the power that must be supplied to the motor is 136 hp
Answer:
englishhhh pleasee
Explanation:
we dont understand sorry....
Answer:
The break force that must be applied to hold the plane stationary is 12597.4 N
Explanation:
p₁ = p₂, T₁ = T₂


The heat supplied =
× Heating value of jet fuel
The heat supplied = 0.5 kg/s × 42,700 kJ/kg = 21,350 kJ/s
The heat supplied =
·
= 20 kg/s
The heat supplied = 20*
= 21,350 kJ/s
= 1.15 kJ/kg
T₃ = 21,350/(1.15*20) + 485.03 = 1413.3 K
p₂ = p₁ × p₂/p₁ = 95×9 = 855 kPa
p₃ = p₂ = 855 kPa
T₃ - T₄ = T₂ - T₁ = 485.03 - 280.15 = 204.88 K
T₄ = 1413.3 - 204.88 = 1208.42 K

T₅ = 1208.42*(2/2.333) = 1035.94 K
= √(1.333*287.3*1035.94) = 629.87 m/s
The total thrust =
×
= 20*629.87 = 12597.4 N
Therefore;
The break force that must be applied to hold the plane stationary = 12597.4 N.
An effect might be a customer not wanting to buy it specifically because it’s by an airport, or maybe the customer wants to buy it because it’s right next to the airport, and a lot of people go to the airport so therefore they might go to the building next to the airport.