Hi There! :)
<span>Examples of the period, frequency, speed of a wave in a sentence?
Examples
•</span><span>He indicated the space behind him with a </span>wave<span> of a hand.
</span><span>
•</span><span>On land only the grass and trees </span>wave, but the water itself is rippled by the wind.
•<span>But wherever it may turn there always will be the </span>wave<span> anticipating its movement.</span>
•<span>Harbor was completely submerged by the great </span>wave, which still came<span>
</span>
Answer:
d. intrusion
Explanation:
An intrusion is molten rock from the Earth's interior that squeezes into existing rock and cools. Folding Folding occurs when rock layers bend and buckle from Earth's internal forces.
Answer:
The bulbs should be connected in parallel.
Explanation:
We want to find out a way to hook up 2 light bulbs and a battery so that when one bulb burns out or is disconnected the other bulbs stays lit.
We must connect the two bulbs in parallel so that even when one bulb is burns out, it will have no effect on the other bulb and the 2nd bulb will keep on working. The current flowing in each bulb will depend upon the resistance of each bulb and the voltage will be same across each bulb.
On the other hand, if we use a series circuit then if one bulb burns out then the there is no flow of current in the circuit and therefore, the second bulb will not be operational.
The current flowing through each bulb is given by
I = V/R
The voltage across each bulb is given by
V = IReq
Where I is the current and Req is the equivalent resistance of the two bulbs connected in parallel and is given by
Req = (R₁*R₂)/(R₁+R₂)
The connection diagram is attached where two bulbs are connected in parallel and are power with a battery.
Answer:0.4 m
Explanation:
Given
Maximum displacement A=0.49
The sum of kinetic and elastic potential energy is 
where k=spring constant
U+K.E.=
when K.E.=U/2
K.E.=kinetic energy
U=Elastic potential Energy

Answer:
84.4 %
Explanation:
Mechanical efficiency = output work/input work × 100 %
output work = 432 J of work for the bike to turn the gears
input work = 512 J of work to ride.
Mechanical efficiency = 432 J/512 J × 100 %
= 0.844 × 100%
= 84.4 %