Answer:
When the obstacle is fixed, the law of action and reaction, makes the reflected wave is inverted.
When the obstacle is mobile, he mobile point, it moves in the direction of the wave, therefore there is no inversion of it.
Explanation:
Waves when they reach an obstacle behave like a shock, therefore if we use the conservation of momentum the wave must reverse its speed, this explains that the speed changes sign, the wave is reflected.
When the obstacle is fixed, the wave when it reaches the obstacle exerts a force on the point, by the law of action and reaction the point exerts on the wave a force of equal magnitude but in the opposite direction, this reaction force which makes the reflected wave is inverted.
When the obstacle is mobile, this is without friction, when the wave arrives it exerts a force on the mobile point, it moves in the direction of the wave, reaching the maximum amplitude of the incident wave, when it is reflected the point begins to go down along with the wave, therefore there is no inversion of it.
Answer:

Explanation:
Acceleration on a VT graph is the slope of the line at the given point. We can find the slope at 3 with Δy/Δx. This gives us (4-2)/(3-(-3)) which works out to be -3m/s^2
Answer:
osmosis
Explanation:
osmosis is the movement of solvent materials through a semi permeable membrane into a region of solute concentration, therefore water moving through a membrane is an osmotic process.
Answer:
The population of the mice will decrease to the faster, stronger, and smarter mice because the weaker will die because of natural selection.
Explanation:
Answer:
joules
joules
Explanation:
Let us convert the time in hours into seconds

Change in internal energy

where E is the internal energy in Joules
p is the power in watts
and t is the time in seconds

Joules
Amount of work done by the system

where P is the pressure and V is the volume
Substituting the given values in above equation, we get -

liter-atmospheres
Work done in Joules

Joules

Substituting the given values we get -

Thus
joules
joules