<h2>emf = 9.3 x 10³</h2>
Explanation:
When a conductor moves in the magnetic field , the emf is generated across its ends . Which can be calculated by the relation
emf ξ = B x l x v
here B is the magnetic field strength , l is the length of conductor and v is its velocity .
In our question B = 5.4 x 10⁻⁵ T
l = 2.30 x 10⁴ m and v = 7.5 x 10³
Thus ξ = 5.4 x 10⁻⁵ x 2.30 x 10⁴ x 7.5 x 10³ = 9.3 x 10³ Volt
Well, first of all, a car moving around a circular curve is not moving
with uniform velocity. The direction of motion is part of velocity, and
the direction is constantly changing on a curve.
The centripetal force that keeps an object moving in a circle is
Force = (mass of the object) · (speed)² / (radius of the circle)
F = m s² / r
We want to know the radius, to rearrange the formula to give us
the radius as a function of everything else.
F = m s² / r
Multiply each side by 'r': F· r = m · s²
Divide each side by 'F': r = m · s² / F
We know all the numbers on the right side,
so we can pluggum in:
r = m · s² / F
r = (1200 kg) · (20 m/s)² / (6000 N) .
I'm pretty sure you can finish it up from here.
Answer:

Explanation:
Given that,
The radius of a flywheel, r = 0.3 m
Angular acceleration of a flywheel, 
We need to find the magnitude of the tangential acceleration after 2.00 s of acceleration.
The relation between the tangential and angular acceleration is given by :

So, the required magnitude of tangential acceleration is
.