Molar mass O2 = 31.99 g/mol
Molar mass CO2 = 44.01 g/mol
Moles ratio:
<span>C3H8 + 5 O2 = 3 CO2 + 4 H2O
</span>
5 x 44.01 g O2 ---------------- 3 x 44.01 g CO2
( mass of O2) ------------------ 37.15 g CO2
mass of O2 = 37.15 x 5 x 44.01/ 3 x 44.01
mass of O2 = 8174.8575 / 132.03
mass of O2 = 61.916 g
Therefore:
1 mole O2 ----------------- 31.99 g
moles O2 -------------------- 61.916
moles O2 = 61.916 x 1 / 31.99
moles = 61.916 / 31.99 => 1.935 moles of O2
EASY AS PIE AND I LIKE PIE
Calcium iodide (CaI2) is an ionic bond, which means that electrons are transferred. In order for Ca to become the ion Ca2+, the calcium atom must lose 2 electrons. (Electrons have a negative charge, so when an atom loses 2 electrons, its ion becomes more positive.) In order for I to become the ion I1−, the iodine atom must gain 1 electron. (When an atom gains an electron, its ion will be more negative.) However, the formula for calcium iodide is CaI2 - there are 2 iodine ions present. This makes sense because the iodine ion has a charge of -1, so two iodine ions have to be present to cancel out the +2 charge of the calcium ion. Therefore, the calcium atom transfers 2 valence electrons, one to each iodine atom, to form the ionic bond.
IF WRONG, SORRY
Dissociation of NaCl in water is given as below,
NaCl ₍s₎ → Na⁺ ₍aq₎ + Cl⁻ ₍aq₎
According to this balanced equation the moles on RHS and LHS are as,
Moles on LHS,
NaCl ₍s₎ = 1 Mole
Moles on RHS,
Na⁺ ₍aq₎ = 1 Mole
Cl⁻ ₍aq₎ = 1 Mole
Result:
<span>When one mole of sodium chloride dissociates in water, it produces 2 Moles of Ions.</span>