Answer:
1.67 atm.
Explanation:
- We can use the general law of ideal gas: PV = nRT.
where, P is the pressure of the gas in atm (P = ??? atm).
V is the volume of the gas in L (V = 5.0 L).
n is the no. of moles of the gas in mol (n = 0.5 mol).
R is the general gas constant (R = 0.0821 L.atm/mol.K),
T is the temperature of the gas in K (T = 203 K).
∴ P = nRT/V = (0.5 mol)(0.0821 L.atm/mol.K)(203 K)/(5.0 L) = 1.67 atm.
Don’t have a calculator on me but multiply 6.02x10 to the 23rd power by 4.5
<u>Francium</u><u> </u><u>is</u><u> </u><u>less</u><u> </u><u>e</u><u>l</u><u>e</u><u>ctronegative</u><u> </u><u>than</u><u> </u><u>barium</u>
It is either concave lens or mirror but since this is reflecting out rather than reflecting back it has to be concave lens. hope that helps! :’)
Answer:
<em> The answer is </em><u><em>(D) Magnetism</em></u>
The methods separates a homogeneous solution by spinning the solution very fast is magnetism.