Newtons first law of motion is also known as the law of inertia
Answer:
1. The sound waves are longitudinal because particles of the medium through which the sound is transported vibrate parallel to the direction that the sound wave moves.
2. A pulse or a wave is introduced into a slinky when a person holds the first coil and gives it a back-and-forth motion. This creates a disturbance within the medium; this disturbance subsequently travels from coil to coil, transporting energy as it moves.
Explanation:
Answer:
Explanation:
Work done in lifting the weight once = mgh
= 20 x 9.8 x (1.9+1.7)
= 705.6 J
= 705.6 / 4.2 calorie
= 168 cals
Total energy to be spent = 600 x 10³ cals
No of times weight is required to be lifted
= 600 x 10³ / 168
= 3.57 x 10³ times
Total time to be taken = 2 x 3.57 x 10³
= 7.14 x 10³ s
=119 minutes .
<u>Answer:</u> The voltage needed is 35.7 V
<u>Explanation:</u>
Assuming that the resistors are arranged in parallel combination.
For the resistors arranged in parallel combination:

We are given:

Using above equation, we get:

Calculating the voltage by using Ohm's law:
.....(1)
where,
V = voltage applied
I = Current = 3.75 A
R = Resistance = 
Putting values in equation 1, we get:

Hence, the voltage needed is 35.7 V
Answer:
yes
Explanation:
Yes, water can stay liquid below zero degrees Celsius. There are a few ways in which this can happen.