The idea here is that you need to figure out how many moles of magnesium chloride,
MgCl
2
, you need to have in the target solution, then use this value to determine what volume of the stock solution would contain this many moles.
As you know, molarity is defined as the number of moles of solute, which in your case is magnesium chloride, divided by liters of solution.
c
=
n
V
So, how many moles of magnesium chloride must be present in the target solution?
c
=
n
V
⇒
n
=
c
⋅
V
n
=
0.158 M
⋅
250.0
⋅
10
−
3
L
=
0.0395 moles MgCl
2
Now determine what volume of the target solution would contain this many moles of magnesium chloride
c
=
n
V
⇒
V
=
n
c
V
=
0.0395
moles
3.15
moles
L
=
0.01254 L
Rounded to three sig figs and expressed in mililiters, the volume will be
V
=
12.5 mL
So, to prepare your target solution, use a
12.5-mL
sample of the stock solution and add enough water to make the volume of the total solution equal to
250.0 mL
.
This is equivalent to diluting the
12.5-mL
sample of the stock solution by a dilution factor of
20
.
Using the method chromatography
Wood is a Heterogeneous Mixture.
Hope this helps
In general chemistry, isomers are two or more elements that have the same number of protons but differ in mass number. In organic chemistry, the compounds are cis or trans isomers if they have the same chemical formula, but differ in the placement of functional groups based on molecular geometry. Cis isomer is when two like functional groups are on the same side of the molecules, while trans isomer is when the like functional groups are on opposite sides.
The cis-trans isomers are shown in the picture. As you can see, in the cis isomer, the methane functional group are both in the same side. Same as well with the hydrogen atoms. On the other hand, these functional groups are opposite to each other in the trans isomer.
A metal that would be magnetic is nickel