The answer is speed of light. All kinds of light waves travel at 3.00 m/s.
A bond allows metal to conduct electricity <span />
Here’s a simplified explanation.
The <em>protons</em> in the nucleus <em>repel each other</em>. The <em>neutrons provide the “glue”</em> that holds the nucleus together and prevents it from flying apart.
The “glue” is the strong nuclear force. It is strong but extremely short range. It falls off extremely rapidly as the p-n distance increases.
A <em>neon atom</em> has 10 protons. There are three stable isotopes, with 10, 11, and 12 neutrons.
With fewer than 10 protons, the glue is not strong enough to hold the nucleus together.
If there are more than 12 neutrons, the average p-n distance is great enough that the glue has again become too weak.
<em>Gold</em> has one stable isotope. It contains 79 protons and 118 neutrons.
If there are fewer than 118 neutrons, the proton repulsions will be too strong for the strong force. If there are more than 118 neutrons, the average p-n distance will be large enough that the glue will again be too weak to hold the nucleus toge
ther.
The element 238 has 238 neutrons and the element 92 has 92 neutrons.
As we have the balanced reaction equation is:
N2O4 (g) ↔ 2NO2(g)
from this balanced equation, we can get the equilibrium constant expression
KC = [NO2]^2[N2O4]^1
from this expression, we can see that [NO2 ] is with 2 exponent of the stoichiometric and we can see that from the balanced equation as NO2
is 2NO2 in the balanced equation.
and [N2O4] is with 1 exponent of the stoichiometric and we can see that from the balanced equation as N2O4 is 1 N2O4 in the balanced equation.
∴ the correct exponent for N2O4 in the equilibrium constant expression is 1