Answer:
Chemical energy to electrical energy
Explanation:
In nature, there are several types of energy.
In this example (a flashlight being turned on), we have a conversion of energy from chemical energy to electrical energy. In fact:
- Chemical energy is the energy stored in the chemical bonds of the molecules of the substances used inside the battery. When the chemical reaction inside the battery occurs, this energy is liberated, and it is used to "push" the electrons along the circuit connected to the battery
- Electric energy is the energy associated to the motion of the electrons along the circuit of the flashlight; it is the energy associated to an electric current.
Moreover, in the flashlight the electric energy is then converted into two more types of energy: light energy (since the bulb in the flashlight produces light) and heat energy (because the flashlight also produces heat, so thermal energy).
Answer:
a)= 0.025602u
b) = 23.848MeV
c) N = 1.546 × 10¹³
Explanation:
The reaction is
²₁H + ²₁H ⇄ ⁴₂H + Q
a) The mass difference is
Δm = 2m(²₁H) - m (⁴₂H)
= 2(2.014102u) - 4.002602u
= 0.025602u
b) Use the Einstein mass energy relation ship
The enegy release is the mass difference times 931.5MeV/U
E = (0.025602) (931.5)
= 23.848MeV
c)
the number of reaction need per seconds is
N = Q/E
= 59W/ 23.848MeV

N = 1.546 × 10¹³
I think it’s D sorry If I’m wrong
Many things can affect a material's resistance, The type of material, how the material is being held (If its laying flat, being pulled, etc). What the material is used for, and how much material there is. Hope this helps!
Answer:
the force will decrease to 3/4 of its original value.
Explanation:
The initial electric force between the two charges is:

where
k is the Coulomb's constant
q is the magnitude of each charge
r is their separation
Later, half of one charge is transferred to the other charge; this means that one charge will have a charge of

while the other charge will be

So, the new force will be

So, the force will decrease to 3/4 of its original value.