Answer:
Waves with high frequencies have shorter wavelengths that work better than low frequency waves for successful echolocation.
Explanation:
To understand why high-frequency waves work better than low frequency waves for successful echolocation, first we have to understand the relation between frequency and wavelength.
The relation between frequency and wavelength is given by
λ = c/f
Where λ is wavelength, c is the speed of light and f is the frequency.
Since the speed of light is constant, the wavelength and frequency are inversely related.
So that means high frequency waves have shorter wavelengths, which is the very reason for the successful echolocation because waves having shorter wavelength are more likely to reach and hit the target and then reflect back to the dolphin to form an image of the object.
Thus, waves with high frequencies have shorter wavelengths that work better than low frequency waves for successful echolocation.
The density is 81.4 g/m3. Before you start plugging numbers into the density formula (D=M/V), you should convert 104 kg to grams, which ends up being 104,000 grams. Then you can plug in the 104,000 grams and 1,278 m3 into the formula. When you divide the mass by the volume, you get a really long decimal, which you can round to 81.4 g/m3, or whatever place your teacher wants you to round to.
Answer:
Dogs make good therapy pets because they usually crave lots of attention and affection.
The outer planets<span> are further away, larger and made up mostly of gas. The </span>inner planets<span> (in order of distance from the sun, closest to furthest) are Mercury, Venus, Earth and Mars. After an asteroid belt comes the </span>outer planets<span>, Jupiter, Saturn, Uranus and Neptune.</span>
Answer:
Work done by the gardner is 500 J
Explanation:
As we know that the gardner apply force perpendicular upward by magnitude 300 N and along the floor horizontal force is 100 N
so we have

now the displacement of the gardner along the floor is

now work done is given as

so we have

