Acceleration is defined as the rate of change of velocity, which, simply put, is a mouthful to describe how fast something speeds up, slows down, or turns. The equation for acceleration is
a = Δv / Δt,
or your final velocity - your starting velocity, then divided by the amount of time. It can also be expressed as
a = (Vf - Vi) / t,
Where Vf is your final velocity, Vi is your initial velocity, and t is the time traveled.
The question gives us that the helicopter moves from a starting velocity of 30 m/s to a final velocity of 40 m/s in the span of 5 seconds. This means we can fill in the variables to the equation, where
Vf = 40,
Vi = 30, and
t = 5.
Plug these known variables into the original equation, and we get
a = (Vf - Vi) / t = (40 - 30) / 5.
From here, the answer comes down to 10 / 5, or 2 m/s^2.
Hope this helps! If you have any questions, don't hesitate to ask :D
<span>A transverse wave is characterized by peaks and dips.</span>
Answer:
K = 202.5 J
Explanation:
Given that,
Mass of pie is 5 kg
Velocity of pie is 9 m/s
We need to find the kinetic energy of a pie. The kinetic energy of an object is due to its motion. It can be given by the formula as follows :

So, the kinetic energy of the pie is 202.5 J.
The SI unit of force is the<em> Newton</em> .
1 Newton is the force that accelerates 1 kilogram of mass at the rate of 1 meter per second-squared.
1 pound of force is roughly 4.45 Newtons of force.
So 1 Newton of force is roughly 3.6 ounces of force.
1 kilogram of mass weighs about 9.81 Newtons on Earth. That's the same as 2.205 pounds.
Answer:
(A) The total resistance of the circuit is 25 Ω
(B) The current through each resistor is 4.4 A
(C) For 10Ω: Potential drop = 44 V
For 15Ω: Potential drop = 66 V
Explanation:
Given;
potential difference, V = 110V
resistors in series, = 10Ω and a 15Ω
(A) The total resistance of the circuit is calculated as follows;
Rt = 10Ω + 15Ω = 25Ω
(B) The current through each resistor;
Same current will flow through the two resistors since they are in series.
I = V/Rt
I = 110 / 25
I = 4.4 A
(C) The voltage drop across each resistor;
For 10Ω: Potential drop = IR₁ = 4.4 x 10 = 44 V
For 15Ω: Potential drop = IR₂ = 4.4 x 15 = 66 V