Current = (voltage) / (resistance)
= (35 volts) / (1,400 ohms)
= 25 milliamperes
Answer: C
Explanation: weak nuclear
For the purpose we will use the following equation for potential energy:
U = m * g * h
In the above equation, m represents the mass of the object, h represents the height of the object and g represents the gravitational field strength (9.8 N/kg on Earth).
When we plug values into the equation, we get following:
U= 65.7kg * 9.8 N/kg *135m = 86921.1 J = 86.92 kJ
Answer:
moving the circuit or the magnet gives the same result
Explanation:
The faraday effect establishes that the temporal variation of imaginative flow produces an electric potential
fem =
dfi / dt
the magnetic flux is
Ф = B. A = B A cos θ
suppose for simplicity that the angle is zero so cos 0 = 1
Φ = B A
By analyzing this expression, the change in magnetic flux can converge while keeping the magnetic field fixed and varying the electric field or keeping the electric field fixed and varying the magnetic field.
Consequently moving the circuit or the magnet gives the same result
By definition we have the momentum is:
P = m * v
Where,
m = mass
v = speed
Before the impact:
P1 = (0.048) * (26) = 1.248 kg * m / s
After the impact:
P2 = (0.048) * (- 17) = -0.816 Kg * m / s.
Then we have that deltaP is:
deltaP = P2-P1
deltaP = (- 0.816) - (1,248)
deltaP = -2,064 kg * m / s.
Then, by definition:
deltaP = F * delta t
Clearing F:
F = (deltaP) / (delta t)
Substituting the values
F = (- 2.064) / (1/800) = - 1651.2N
answer:
the magnitude of the average force exerted on the superball by the sidewalk is 1651.2N