Esta energía<span> puede ser convertida en otras, como calor para calentar agua o edificios, invernaderos etc. o electricidad. Podemos convertir la </span>energía<span> solar en eléctrica de dos </span>formas<span>: Fotovoltáica (PV): La radiación solar se convierte directamente en electricidad
hope this help mark brainliest plz</span>
F=ma
F=QE = 1.602e-19C*700N/C = 1.1214e-16N
1.1214e-16N = ma = 1.6726e-27kg * a
a = 6.702e10 m/s² along the direction of the field line
The aluminum atom_loses_____electrons to form an ion.
The ion that is formed is_Al³⁺_____.
aluminium has the electronic configuration as 1s² 2s² 2p⁶ 3s² 3p¹
from the electronic configuration , we see that aluminium can attain stability by losing 3 electrons from outer shell.
after losing 3 electrons , the ion formed is given as Al³⁺
hence the correct options to fill in the blanks are lose and Al³⁺
Answer:
acceleration a = 1.04 m/s2
Explanation:
Assume the train has a speed of 23m/s when the last car passes the railway workers. Once this happens the last car would have traveled a total distance of the 180m distance between the railway worker standing 180 m from where the front of the train started plus the 75m distance from the first car to the last car:
s = 75 + 180 = 255 m
We can use the following equation of motion to find out the distance traveled by the car:
where v = 23 m/s is the velocity of the car when it passes the worker,
= 0m/s is the initial velocity of the car when it starts, a m/s2 is the acceleration, which we are looking for.



Answer:
r = 4.24x10⁴ km.
Explanation:
To find the radius of such an orbit we need to use Kepler's third law:

<em>where T₁: is the orbital period of the geosynchronous Earth satellite = 1 d, T₂: is the orbital period of the moon = 0.07481 y, r₁: is the radius of such an orbit and r₂: is the orbital radius of the moon = 3.84x10⁵ km. </em>
From equation (1), r₁ is:
Therefore, the radius of such an orbit is 4.24x10⁴ km.
I hope it helps you!