Answer:
For a given spring the extension is directly proportional to the force applied For example if the force is doubled, the extension doubles When an elastic object is stretched beyond its limit of proportionality the object does not return to its original length when the force is removed
Explanation:
Answer:
10.23m/s^2
Explanation:
GIven data
mass of elevator = 2125 kg
Force= 21,750 N
Required
The maximum acceleration upward
F= ma
a= F/m
a=21,750/2125
a= 10.23m/s^2
Hence the acceleration is 10.23m/s^2
Answer:
a) 5 N b) 225 N c) 5 N
Explanation:
a) Per Coulomb's Law the repulsive force between 2 equal sign charges, is directly proportional to the product of the charges, and inversely proportional to the square of the distance between them, acting along the line that joins the charges, as follows:
F₁₂ = K Q₁ Q₂ / r₁₂²
So, if we make Q1 = Q1/5, the net effect will be to reduce the force in the same factor, i.e. F₁₂ = 25 N / 5 = 5 N
b) If we reduce the distance, from r, to r/3, as the factor is squared, the net effect will be to increase the force in a factor equal to 3² = 9.
So, we will have F₁₂ = 9. 25 N = 225 N
c) If we make Q2 = 5Q2, the force would be increased 5 times, but if at the same , we increase the distance 5 times, as the factor is squared, the net factor will be 5/25 = 1/5, so we will have:
F₁₂ = 25 N .1/5 = 5 N
Answer:
= 391.67 Hz
Explanation:
The sound of lowest frequency which is produced by a vibrating sting is called its fundamental frequency (
).
The For a vibrating string, the fundamental frequency (
) can be determined by:
= 
Where v is the speed of waves of the string, and L is the length of the string.
L = 42.0 cm = 0.42 m
v = 329 m/s
= 
= 
= 391.6667 Hz
The fundamental frequency of the string is 391.67 Hz.
<span>This is not a good answer, because some one t o forgot to tell us the important temperature, and the given atmospheric pressure "at sea level" makes really no sense. In SI units with dry air at 20°C (68°F), the speed of sound c is 343 meters per second (m/s).</span>