They are balanced b/c the motion is constant
Force on a proton when they are moving inside the magnetic field is given by
so here while protons are going upwards we can say its direction of velocity is towards +Y and magnetic field is towards us which is along +Z direction so they will have force due to this motion.
As per above equation of force we can have direction of force which is along +X direction.
So here both proton will bend towards +X direction and start moving in curved path.
The law applied here is Hooke's Law which describes the force exerted by the spring with a given distance. The equation for this is F = kΔx, where F is the force in Newtons, k is the spring constant in N/m while Δx is the displacement in meters.
If you want to find work done by a spring, this can be solved by using differential equations. However, derived equations are already ready for use. The equation is
W = k[{x₂-x₁)² - (x₁-xn)²],
where
xn is the natural length
x₁ is the stretched length
x₂ is also the stretched length when stretched even further than x₁
In this case xn =x₁. So, that means that (x₁-xn) = 0 and (x₂-x₁) = 11 cm or 0.11 m.
Then, substituting the values,
2 J = k (0.11² -0²)
k = 165.29 N/m
Finally, we use the value of k to the Hooke's Law to determine the Force.
F = kΔx = (165.29 N/m)(0.11 m)
F = 18.18 Newtons
We have that Zero signifies a perfect circle shape and 1 shows it maximum out of order shape.
From the question we are told
What does it mean when the orbital eccentricity of a planet is close to 1
Generally
Eccentricity
This in its simplest definition means to be eccentric which means to be a bit out of order or for the given subject at hand means to be a bit out of shape
Naturally the Eccentricity that an object possess is defined by two number 0(zero) to 1(one)
Where
Zero signifies a perfect circle shape and 1 shows it maximum out of order shape
For more information on this visit
brainly.com/question/17208989?referrer=searchResults
The ball took half of the total time ... 4 seconds ... to reach its highest
point, where it began to fall back down to the point of release.
At its highest point, its velocity changed from upward to downward.
At that instant, its velocity was zero.
The acceleration of gravity is 9.8 m/s². That means that an object that's
acted on only by gravity gains 9.8 m/s of downward speed every second.
-- If the object is falling downward, it moves 9.8 m/s faster every second.
-- If the object is tossed upward, it moves 9.8 m/s slower every second.
The ball took 4 seconds to lose all of its upward speed. So it must have
been thrown upward at (4 x 9.8 m/s) = 39.2 m/s .
(That's about 87.7 mph straight up. Somebody had an amazing pitching arm.)