Answer:
(a)
(b) 
Explanation:
The reaction that is carried out by the enzyme catalase produces
The reaction that is carried out by the enzyme catalase produces 
Glycolysis yields 2 ATP molecules, Krebs cycle yields 2 ATP molecules, ETS yields 34 ATP molecules.
Answer:
M of HI = 5.4 M.
Explanation:
- We have the rule: at neutralization, the no. of millimoles of acid is equal to the no. of millimoles of the base.
<em>(XMV) acid = (XMV) base.</em>
where, X is the no. of (H) or (OH) reproducible in acid or base, respectively.
M is the molarity of the acid or base.
V is the volume of the acid or base.
<em>(XMV) HI = (XMV) Ca(OH)₂.</em>
For HI; X = 1, M = ??? M, V = 25.0 mL.
For Ca(OH)₂, X = 2, M = 1.5 M, V = 45.0 mL.
<em>∴ M of HI = (XMV) Ca(OH)₂ / (XV) HI</em> = (2)(1.5 M)(45.0 mL) / (1)(25.0 mL) = <em>5.4 M.</em>
Answer:
c = 0.377 J/g.°C
c = 0.2350 J/g.°C
J = 27.3 J
Explanation:
We can calculate the heat (Q) absorbed or released by a substance using the following expression.
Q = c × m × ΔT
where,
c: specific heat
m: mass
ΔT: change in the temperature
<em>It takes 49.0J to raise the temperature of an 11.5g piece of unknown metal from 13.0°C to 24.3°C. What is the specific heat for the metal? Express your answer numerically, in J/g.°C</em>
Q = c × m × ΔT
49.0 J = c × 11.5 g × (24.3°C - 13.0°C)
c = 0.377 J/g.°C
<em>The molar heat capacity of silver is 25.35 J/mol.°C. How much energy would it take to raise the temperature of 11.5g of silver by 10.1°C? Express your answer numerically, in Joules. What is the specific heat of silver?</em>
<em />
The molar mass of silver is 107.87 g/mol. The specific heat of silver is:

Q = c × m × ΔT
Q = (0.2350 J/g.°C) × 11.5 g × 10.1°C = 27.3 J