So potassium<span> is </span>more<span> reactive </span>than<span> lithium because the outer electron of a </span>potassium<span> atom is </span>further<span> from its nucleus </span>than<span> the outer electron of a lithium atom.</span>
Answer:
m = 671 grams
Explanation:
Given that,
No of moles, n = 4.9
Molar mass of Barium, M = 137 g
Mass divided by molar mass is equal to no of moles. It can be given by the formula as follows :
or
m = 671 grams
So, the total mass of the sample of Barium is 671 grams.
The chemical equation would be:
2NO(g) + O2(g) --> 2NO2 (g)
<span>At equilibrium state, the partial pressure of the gases would be as follows : </span>
<span>NO = 522 - 2x </span>
<span>O2 = 421 - x </span>
<span>NO2 = 2x </span>
<span>- - - - - - - - - - - - -</span>
<span>943 - x = 748 </span>
<span>x = 195</span>
Calculating for Kp,
<span>Kp = (NO2)^2/ ((NO)^2 * (O2)) </span>
<span>Kp = (2 * 195)^2/ ((522 - 2 * 195)^2 * (421 - 195)) </span>
<span>Kp = 0.0386 </span>
The four quantum numbers are:
principle quantum number: this number describes the energy of orbitals. It describes the most probable distance between the electron and the nucleus.
angular quantum number: this number describes the shape of orbitals, and thus, describes the angular distribution.
magnetic quantum number: this number describes the number of orbitals and how they are oriented within the subshell
spin quantum number: this number determines the direction of the spin of the electron.
Based on the above, the quantum number that distinguishes the different shapes of the orbitals is the angular quantum number
Energy levels inside an are the specific that electrons can have when occupying specific orbitals. Electrons can be excited to higher by absorbing from the surroundings. Light is emitted when an electron relaxes from a high state to a lower one.