You can't really determine the amount of computers from this question, they're obviously not going to have one computer for everyone so half third, or even a fourth of the school population
Answer:
N$ 612.5
Step by step explaination:
Given,
Principal or'P'=N$2500
Time or'n'=3 years & 6 months or 3.5 years
Rate of profit or 'r'=7% or 7/100
Profit or 'I'=?
_____________________________________
We know,
I=P*n*r
I=2500*3.5*7/100
I=612.5
So,simple interest is N$ 612.5.
Answer:

Step-by-step explanation:
Let be "x" the cost in dollars of a hamburger and "y" the cost in dollars of a soft drink.
The cost of 4 hamburguers can be represented with this expression:

And the cost of 6 soft drinks can be represented with this expression:

Since the total cost for 4 hamburgers and 6 soft drinks is $34, you can write the following equation:
<em>[Equation 1]</em>
The following expression represents the the cost of 3 soft drinks:

According to the information given in the exercise, the total cost for 4 hamburgers and 3 soft drinks is $25. Then, the equation that represents this is:
<em> [Equation 2]</em>
Therefore, the <em>Equation 1 </em>and the <em>Equation 2 </em>can be used to determine the price of a hamburger and the price of a soft drink
Y - y1 = m(x - x1)
slope(m) = -3/7
(5,8)...x1 = 5 and y1 = 8
now we sub
y - 8 = -3/7(x - 5) <===
Answer:
1. Opposite
2. angle-side-angle criterion
Step-by-step explanation:
Since ABCD is a parallelogram, the two pairs of <u>(opposite)</u> sides (AB¯ and CD¯, as well as AD¯ and BC¯) are congruent. Then, since ∠9 and ∠11 are vertical angles, it can be concluded that ∠9≅∠11. Since ABCD is a parallelogram, AB¯∥CD¯. Since ∠2 and ∠5 are alternate interior angles along these parallel lines, the Alternate Interior Angles Theorem allows that ∠2≅∠5. Since two angles of △AEB are congruent to two angles of △CED, the Third Angles Theorem supports that ∠8≅∠3. Therefore, using the <u>(angle-side-angle criterion)</u>, it can be stated that △AEB≅△CED. Then, applying the definition of congruent triangles, it can be stated that AE¯≅CE¯, which makes E the midpoint of AC¯. Use a similar argument to prove that △AED≅△CEB; then it can be concluded that E is also the midpoint of BD¯. Since the midpoint of both line segments is the same point, the segments bisect each other by definition. Match each number (1 and 2) with the word or phrase that correctly fills in the corresponding blank in the proof.
A parallelogram posses the following features:
1. The opposite sides are parallel.
2. The opposite sides are congruent.
3. It has supplementary consecutive angles.
4. The diagonals bisect each other.