The given question is incomplete. The complete question is as follows.
A 75-g bullet is fired from a rifle having a barrel 0.540 m long. Choose the origin to be at the location where the bullet begins to move. Then the force (in newtons) exerted by the expanding gas on the bullet is
, where x is in meters. Determine the work done by the gas on the bullet as the bullet travels the length of the barrel.
Explanation:
We will calculate the work done as follows.
W = 
= 
= ![[14000x + 5000x^{2} - 8666.7x^{3}]^{0.54}_{0}](https://tex.z-dn.net/?f=%5B14000x%20%2B%205000x%5E%7B2%7D%20-%208666.7x%5E%7B3%7D%5D%5E%7B0.54%7D_%7B0%7D)
= 7560 + 1458 - 1364.69
= 7653.31 J
or, = 7.65 kJ (as 1 kJ = 1000 J)
Thus, we can conclude that the work done by the gas on the bullet as the bullet travels the length of the barrel is 7.65 kJ.
Answer:
2.5 m/s
Explanation:
The speed of the animal is given by the ratio between the distance travelled by the animal and the time elapsed:

where d is the distance travelled and t the time elapsed. Note that this quantity is also equal to the slope of the curve.
In the time interval 0-20 s, we have
d = 50 m - 0 m = 50 m
t = 20 s - 0 s = 20 s
So, the speed is

It is determined by the nature of the green light. Because lasers create light at almost a single frequency, green laser light would appear as a thin line of pure green. Other sources of "green" light emit light at a variety of frequencies, including yellow and blue, resulting in a strong green band in the center that fades into blue-green and yellow-green at the borders.
For example, here’s a graph of the spectrum of a green LED, showing the color range: Attachment #1
and here’s a graph of the transmission spectra of several standard photographic filters, including green: Attachment #2
Learn more about the color spectrum:
#SPJ2
To develop this problem it is necessary to apply the equations concerning Bernoulli's law of conservation of flow.
From Bernoulli it is possible to express the change in pressure as

Where,
Velocity
Density
g = Gravitational acceleration
h = Height
From the given values the change of flow is given as

Therefore between the two states we have to



The flow rate will have changed to 54.77 % of its original value.