A convergent meniscus lens is a lens that is composed of two spherical surfaces, like the on shown next:
The imaginary line that runs through the middle of the lens is the "symmetry axis".
In this type of lenses incident parallel beams of light converge in one point, as follows:
And thus we get the diagram.
This is True
Kinetic energy is the energy of motion. The bicyclist is in motion as he pedals up the tall hill. Therefore, the bicyclist contains kinetic energy.
Recall that work is the amount of energy transferred to an object when it experiences a displacement and is acted upon by an external force. It is given a symbol of W and is measured in joules (J).
W=\vec{F}\cdot \Delta \vec{d}
We can use this formula to determine the work done by very specific forces, generating specific types of energy. We will examine three types of energy in this activity: gravitational potential, kinetic, and thermal. Before we start deriving equations for gravitational potential energy and kinetic energy, we should note that since work is the transfer and/or transformation of energy, we can also write its symbol as \Delta E.
Thank you for posting your question here at brainly. Below is the answer:
sum of Mc = 0 = -Ay(4.2 + 3cos(59)) + (275)(2.1 + 3cos(59)) + M
<span>- Ay = (M + (275*(2.1 + 3cos(59)))/(4.2 + 3cos(59)) </span>
<span>sum of Ma = 0 = (-275)(2.1) - Cy(4.2 + 3cos(59)) + M </span>
<span>- Cy = (M - (275*2.1))/(4.2 + 3cos(59)) </span>
<span>Ay + Cy = 275 = ((M+1002.41)+(M-577.5))/(5.745) </span>
<span>= (2M + 424.91)/(5.745) </span>
<span>M = ((275*5.745) - 424.91)/2 </span>
<span>= 577.483 which rounds off to 577 </span>
<span>Is it maybe supposed to be Ay - Cy = 275</span>