Answer: 1,224 km/h
Explanation:
To do this, we pick the first unit and convert
Picking m first and converting to km:
Since we're converting from a non-prefix to a prefix, we divide the value by the prefix were taking it to. In this case, kilo = 10³ which means we're going to divide our value by 1000 to convert it from m to km
340 m/s ÷ 1000 = 0.34 km/s
Now, let's convert our seconds to hour:
We'll need to calculate how many hours is equivalent to one second first;
1 hr = 60×60 seconds
X hr = 1 second
*Cross multiply*
1 × 1 = X × 60 × 60
1 = 3,600 X
X = 1 / 3,600
X = 2.778×10⁻⁴ hour
So, in the place of "1 Second", we're going to be inserting 2.778×10⁻⁴ hour instead
0.34 km / s = 0.34 km / 2.778×10⁻⁴ hour
(0.34 / 2.778×10⁻⁴) km/hour
1,224 km/h.
340 m/s = 1,224 km/h
Solution: From the given question, we shall find the vector quantity among the
(A) Time , (B) Velocity, (C) Distance , (D) Speed
Concept: <u>Vector Quantity: </u>All those physical quantities which have magnitude as well as specific directions, are called Vector Quantities.
Here, Time, Distance and Speed have only magnitude but have no directions so they will be scalar quantities.
Now, <u>Velocity:</u> It is defined as the change in displacement per unit time. Since the change in the displacement will be in particular direction only. Hence, velocity will be the vector quantity.
Hence, the option (B) Velocity will be the correct option.
Answer:
-0.0789 m
Explanation:
Recall that the y-component comes associated with the sin(18.4) through the following trigonometric relationship:
y = 0.250 sin(-18.4) ≈ -0.0789 m
Notice it is negative since it is below the x-axis.
Answer:
Vf = 69.56 cm/s
Explanation:
In order to find the final speed of the ramp, we will use the equations of motion. First we use second equation of motion to find out the acceleration of marble:
s = Vi t + (1/2)at²
where,
s = distance traveled = 160 cm
Vi = Initial Speed = 0 cm/s (since, marble starts from rest)
t = time interval = 4.6 s
a = acceleration = ?
Therefore,
160 cm = (0 cm/s)(4.6 s) + (1/2)(a)(4.6 s)²
a = (320 cm)/(4.6 s)²
a = 15.12 cm/s²
Now, we use first equation of motion:
Vf = Vi + at
Vf = 0 cm/s + (15.12 cm/s²)(4.6 s)
<u>Vf = 69.56 cm/s</u>
<span>The true brightness of an object
is called its luminosity. It is the total amount of energy emitted by bright or
meteorological objects over a period of time. It has the SI unit of joules per
second or watts. So the answer is letter A. Intensity is the measure of how
strong the substance or object is when it projects something. Magnitude is a
measure of how great is the size the object produces. Viscosity is the measure
of flow of a substance.</span>