Answer:
the magnitude of first force = 3 × 5= 15 N
ANd, the magnitude of second force = 5 × 5 = 25 N
Explanation:
The computation of the magnitude of the each force is shown below:
Provided that
Ratio of forces = 3: 5
Let us assume the common factor is x
Now
first force = 3x
And, the second force = 5x
Resultant force = 35 N
The Angle between the forces = 60 degrees
Based on the above information
Resultant force i.e. F = √ F_1^2 +F_2^2 + 2 F_1F_2cos
35 = √[(3x)²+ (5x)²+ 2 (3x)(5x) cos 60°]
35 =√ 9x² + 25x² + 15x² (cos 60° = 0.5)
35 = √49 x²
x = 5
So, the magnitude of first force = 3 × 5= 15 N
ANd, the magnitude of second force = 5 × 5 = 25 N
Answer:
I know that T= kx where T is the tension which equaka the force og gravity = mg = 1.37 * 10 = 13.7 x is the elongation of the spring so the length after dangling the object minus the original length.
I hope it helps
plz let me know if it is wrong or right.
Not if both speeds are in the same units.
However, if the 254 is 'centimeters per time' and the 100 is 'inches per time',
then the speeds are equal.
Answer:
The potential difference is 121.069 V
Solution:
As per the question:
Diameter of the cylinder, d = 9.0 cm = 0.09 m
Length of the cylinder, l = 40 cm = 1.4 m
Average Resistivity, 
Current, I = 100 mA = 0.1 A
Now,
To calculate the potential difference between the hands:
Cross- sectional Area of the Cylinder, A = 
Resistivity is given by:



Now, using Ohm's Law:
V = IR
