The vector perpendicular to the plane of A = 3i+ 6j - 2k and B = 4i-j +3k is 16 i - 17 j - 27 k
Let r be the vector perpendicular to A and B,
r = A * B
A = 3i + 6j - 2k
B = 4i - j + 3k
a1 = 3
a2 = 6
a3 = - 2
b1 = 4
b2 = - 1
b3 = 3
a * b = ( a2 b3 - b2 a3 ) i + ( a3 b1 - b3 a1 ) j + ( a1 b2 - b1 a2 ) k
a * b = [ ( 6 * 3 ) - ( - 1 * - 2 ) ] i + [ ( - 2 * 4 ) - ( 3 * 3 ) ] j + [ ( 3 * - 1 ) - ( 4 * 6 ) ] k
a * b = 16 i - 17 j - 27 k
The perpendicular vector, r = 16 i - 17 j - 27 k
Therefore, the vector perpendicular to the plane of A = 3i + 6j - 2k and B = 4i - j + 3k is 16 i - 17 j - 27 k
To know more about perpendicular vectors
brainly.com/question/14384780
#SPJ1
Answer:
0.8895m
Explanation:
Cable diameter = 0.0125m
Mass of elevator = 6450kg
Young Modulus(E) = 2.11*10¹¹N/m
∇l (change in length) =
L = 362m
A = Πr², but r = d / 2 = 0.0125 / 2 = 0.00625m
A = 3.142 * (0.00625)² = 1.227*10^-4m²
Young Modulus (E) = Tensile stress / Tensile strain
E = (F / A) / ∇l / L
F = mg = 6450 * 9.8 = 63210N
2.11*10¹¹ = (63210 / 1.22*10^-4) / (∇l / 362)
2.11*10¹¹ = 5.18*10⁸ / (∇l / 362)
2.11*10¹¹ = (5.18*10⁸ * 362) / ∇l
2.11*10¹¹ = 1.875*10¹¹ / ∇l
∇l = 1.875*10¹¹ / 2.11*10¹¹
∇l = 0.8895m
The change in length is 0.8895m
Boron Group
elements have three valence electrons and are fairly reactive. All of them are solids at room temperature. Boron is a very hard, black metalloid with a high melting point.
Answer:


Explanation:

Solve using the quadratic formula.

