Answer:
Explanation:
mass of refrigerator, m = 110 kg
coefficient of static friction, μs = 0.85
coefficient of kinetic friction, μk = 0.59
(a) the minimum force required to just start the motion in refrigerator
F = μs x mg
F = 0.85 x 110 x 9.8
F = 916.3 N
(b) The force required to move the refrigerator with constant speed
F' = μk x mg
F' = 0.59 x 110 x 9.8
F' = 636.02 N
(c) Let a be the acceleration.
Net force = Applied force - friction force
F net = 950 - 636.02
F net = 313.98 N
a = F net / mass
a = 313.98 / 110
a = 2.85 m/s²
The andwer of tye question is 3O2
<span>The moon's orbit around the Earth will advance in one day:
1°
13° correct answer
27°
29°</span><span />
To find the impulse you multiply the mass by the change in velocity (impulse=mass×Δvelocity). So in this case, 3 kg × 12 m/s ("12" because the object went from zero m/s to 12 m/s).
The answer is 36 kg m/s
The resultant force on the positive charge is mathematically given as
X=40N
<h3>What is the magnitude of the electrostatic force on the negative charge?</h3>
Question Parameters:
Three-point charges, two positive and one negative, each having a magnitude of 20
Generally, the -ve charge is mathematically given as

Q+=X
Therefore

X=40N
For more information on Force
brainly.com/question/26115859