<h2>
Power is 11 W</h2>
Explanation:
Power = Work ÷ Time
Work = Force x Displacement
Force = 22 N
Displacement = 3 m
Time = 6 seconds
Substituting
Work = Force x Displacement
Work = 22 x 3 = 66 J
Power = Work ÷ Time
Power = 66 ÷ 6
Power = 11 W
Power is 11 W
Answer:
The initial velocity of the snowball was 22.21 m/s
Explanation:
Since the collision is inelastic, only momentum is conserved. And since the snowball and the box move together after the collision, they have the same final velocity.
Let
be the mass of the ball, and
be its initial velocity; let
be the mass of the box, and
be its velocity; let
be the final velocity after the collision, then according to the law of conservation of momentum:
.
From this we solve for
, the initial velocity of the snowball:

now we plug in the numerical values
,
,
, and
to get:


The initial velocity of the snowball is 22.21 m/s.
<em>P.S: we did not take vectors into account because everything is moving in one direction—towards the west.</em>
2H2O->2H2+O2
This balanced chemical equation represents the decomposition of water into hydrogen gas and oxygen gas
Explanation:
momentum = mass x velocity
initial momentum = 100 x 15 = 1500kgm/s
after momentum = 100 x 20 = 2000kgm/s
a =(v-u)/t
a = (20-15)/10
a = 5/10
a = 0.5m/s²
f = ma
f = 100 x 0.5
f = 50N
Answer: The tension in the string is zero
Explanation: