Answer:
All of them: change velocity, accelerate, change position
Explanation:
We can answer this question by using Newton's second law:
F = ma
where
F is the net force on the object
m is the mass of the object
a is the acceleration
We notice that when there is an unbalanced force on the object,
, and therefore

whcih means that the object will accelerate.
But acceleration is the rate of change of velocity, v:

And so,

which means that the object will change velocity.
If the object is changing velocity, this means that it is also moving: therefore, the position of the object must be changing, so also the option "change position" is correct.
22. a - (vf^2 - vi^2)/(2d)
a = (0 - 23^2)/(170)
a = -3.1 m/s^2
23. Find the time (t) to reach 33 m/s at 3 m/s^2
33-0/t = 3
33 = 3t
t = 11 sec to reach 33 m/s^2
Find the av velocuty: 33+0/2 = 16.5 m/s
Dist = 16.5 * 11 = 181.5 meters to each 33m/s speed. Runway has to be at least this long.
24. The sprinter starts from rest. The average acceleration is found from:
(Vf)^2 = (Vi)^2 = 2as ---> a = (Vf)^2 - (Vi)^2/2s = (11.5m/s)^2-0/2(15.0m) = 4.408m/s^2 estimated: 4.41m/s^2
The elapsed time is found by solving
Vf = Vi + at ----> t = vf-vi/a = 11.5m/s-0/4.408m/s^2 = 2.61s
25. Acceleration of car = v-u/t = 0ms^-1-21.0ms^-1/6.00s = -3.50ms^-2
S = v^2 - u^2/2a = (0ms^-1)^2-(21.0ms^-1)^2/2*-3.50ms^-2 = 63.0m
26. Assuming a constant deceleration of 7.00 m/s^2
final velocity, v = 0m/s
acceleration, a = -7.00m/s^2
displacement, s - 92m
Using v^2 = u^2 - 2as
0^2 - u^2 + 2 (-7.00) (92)
initial velocity, u = sqrt (1288) = 35.9 m/s
This is the speed pf the car just bore braking.
I hope this helps!!
Answer:
d) The trampoline pushes back up on the gymnast.
Explanation:
According to Newton's third law of motion; for every action force, there is an equal and opposite reaction force. The action force and reaction force are reciprocal to one another i.e. they act oppositely to one another. The reaction force acts in an opposite direction to the action force and vice versa.
In this question, a gymnast pushed down on a trampoline during a routine. This is called the ACTION FORCE. In conformity to Newton's third law, the trampoline pushes back up on the gymnast. This opposite force is called the REACTION FORCE.
Explanation:
I don't think the coat will make any difference