Answer:
Area required = 9.5 ft²
Explanation:
Step by step explanation is given in the attached document.
Answer:
a) 159.07 MPa
b) 10.45 MPa
c) 79.535 MPa
Explanation:
Given data :
length of cantilever beam = 1.5m
outer width and height = 100 mm
wall thickness = 8mm
uniform load carried by beam along entire length= 6.5 kN/m
concentrated force at free end = 4kN
first we determine these values :
Mmax = ( 6.5 *(1.5) * (1.5/2) + 4 * 1.5 ) = 13312.5 N.m
Vmax = ( 6.5 * (1.5) + 4 ) = 13750 N
A) determine max bending stress
б =
=
= 159.07 MPa
B) Determine max transverse shear stress
attached below
ζ = 10.45 MPa
C) Determine max shear stress in the beam
This occurs at the top of the beam or at the centroidal axis
hence max stress in the beam = 159.07 / 2 = 79.535 MPa
attached below is the remaining solution
Answer:
The theoretical maximum specific gravity at 6.5% binder content is 2.44.
Explanation:
Given the specific gravity at 5.0 % binder content 2.495
Therefore
95 % mix + 5 % binder gives S.G. = 2.495
Where the binder is S.G. = 1, Therefore
Per 100 mass unit we have (Mx + 5)/(Vx + 5) = 2.495
(95 +5)/(Vx +5) = 2.495
2.495 × (Vx + 5) = 100
Vx =35.08 to 95
Or density of mix = Mx/Vx = 95/35.08 = 2.7081
Therefore when we have 6.5 % binder content, we get
Per 100 mass unit
93.5 Mass unit of Mx has a volume of
Mass/Density = 93.5/2.7081 = 34.526 volume units
Therefore we have
At 6.5 % binder content.
(100 mass unit)/(34.526 + 6.5) = 2.44
The theoretical maximum specific gravity at 6.5% binder content = 2.44.
Answer:
Engineering is the use of scientific principles to design and build machines, structures, and other items, including bridges, tunnels, roads, vehicles, and buildings. In other words, Engineering is the use of science and math to design or make things.
Explanation: