1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MA_775_DIABLO [31]
3 years ago
10

The theoretical maximum specific gravity of a mix at 5.0% binder content is 2.495. Using a binder specific gravity of 1.0, find

the theoretical maximum specific gravity at 6.5% binder content. (Hint: Both use the same stone, therefore have the same Gmb)
Engineering
1 answer:
PSYCHO15rus [73]3 years ago
3 0

Answer:

The theoretical maximum specific gravity at 6.5% binder content is 2.44.

Explanation:

Given the specific gravity at 5.0 %  binder content 2.495

Therefore

95 % mix + 5 % binder  gives S.G. = 2.495

Where the  binder is S.G. = 1, Therefore

Per 100 mass unit we have (Mx + 5)/(Vx + 5) = 2.495

(95 +5)/(Vx +5) = 2.495

2.495 × (Vx + 5) = 100

Vx =35.08 to 95

Or density of mix = Mx/Vx = 95/35.08 = 2.7081

Therefore when we have 6.5 % binder content, we get

Per 100 mass unit

93.5 Mass unit of Mx has a volume of

Mass/Density = 93.5/2.7081 = 34.526 volume units

Therefore we have

At 6.5 % binder content.

(100 mass unit)/(34.526 + 6.5) = 2.44

The theoretical maximum specific gravity at 6.5% binder content = 2.44.

You might be interested in
An air-standard dual cycle has a compression ratio of 9.1 and displacement of Vd = 2.2 L. At the beginning of compression, p1 =
jok3333 [9.3K]

Answer:

a) T₂ is 701.479 K

T₃ is 1226.05 K

T₄ is 2350.34 K

T₅ is 1260.56 K

b) The net work of the cycle in kJ is 2.28 kJ

c) The power developed is 114.2 kW

d) The thermal efficiency, \eta _{dual} is 53.78%

e) The mean effective pressure is 1038.25 kPa

Explanation:

a) Here we have;

\frac{T_{2}}{T_{1}}=\left (\frac{v_{1}}{v_{2}}  \right )^{\gamma -1} = \left (r  \right )^{\gamma -1} = \left (\frac{p_{2}}{p_{1}}  \right )^{\frac{\gamma -1}{\gamma }}

Where:

p₁ = Initial pressure = 95 kPa

p₂ = Final pressure =

T₁ = Initial temperature = 290 K

T₂ = Final temperature

v₁ = Initial volume

v₂ = Final volume

v_d = Displacement volume =

γ = Ratio of specific heats at constant pressure and constant volume cp/cv = 1.4 for air

r = Compression ratio = 9.1

Total heat added = 4.25 kJ

1/4 × Total heat added = c_v \times (T_3 - T_2)

3/4 × Total heat added = c_p \times (T_4 - T_3)

c_v = Specific heat at constant volume = 0.718×2.821× 10⁻³

c_p = Specific heat at constant pressure = 1.005×2.821× 10⁻³

v₁ - v₂ = 2.2 L

\left \frac{v_{1}}{v_{2}}  \right =r  \right = 9.1

v₁ = v₂·9.1

∴ 9.1·v₂ - v₂ = 2.2 L  = 2.2 × 10⁻³ m³

8.1·v₂ = 2.2 × 10⁻³ m³

v₂ = 2.2 × 10⁻³ m³ ÷ 8.1 = 2.72 × 10⁻⁴ m³

v₁ = v₂×9.1 = 2.72 × 10⁻⁴ m³ × 9.1 = 2.47 × 10⁻³ m³

Plugging in the values, we have;

{T_{2}}= T_{1} \times \left (r  \right )^{\gamma -1}  = 290 \times 9.1^{1.4 - 1} = 701.479 \, K

From;

\left (\frac{p_{2}}{p_{1}}  \right )^{\frac{\gamma -1}{\gamma }}= \left (r  \right )^{\gamma -1} we have;

p_{2} = p_{1}} \times \left (r  \right )^{\gamma } = 95 \times \left (9.1  \right )^{1.4} = 2091.13 \ kPa

1/4×4.25 =  0.718 \times 2.821 \times  10^{-3}\times (T_3 - 701.479)

∴ T₃ = 1226.05 K

Also;

3/4 × Total heat added = c_p \times (T_4 - T_3) gives;

3/4 × 4.25 = 1.005 \times 2.821 \times  10^{-3} \times (T_4 - 1226.05) gives;

T₄ = 2350.34 K

\frac{T_{4}}{T_{5}}=\left (\frac{v_{5}}{v_{4}}  \right )^{\gamma -1} = \left (\frac{r}{\rho }  \right )^{\gamma -1}

\rho = \frac{T_4}{T_3} = \frac{2350.34}{1226.04} = 1.92

T_{5} =  \frac{T_{4}}{\left (\frac{r}{\rho }  \right )^{\gamma -1}}= \frac{2350.34 }{\left (\frac{9.1}{1.92 }  \right )^{1.4-1}} =1260.56 \ K

b) Heat rejected =  c_v \times (T_5 - T_1)

Therefore \ heat \ rejected =  0.718 \times 2.821 \times  10^{-3}\times (1260.56 - 290) = 1.966 kJ

The net work done = Heat added - Heat rejected

∴ The net work done = 4.25 - 1.966 = 2.28 kJ

The net work of the cycle in kJ = 2.28 kJ

c) Power = Work done per each cycle × Number of cycles completed each second

Where we have 3000 cycles per minute, we have 3000/60 = 50 cycles per second

Hence, the power developed = 2.28 kJ/cycle × 50 cycle/second = 114.2 kW

d)

Thermal \ efficiency, \, \eta _{dual} =  \frac{Work \ done}{Heat \ supplied} = \frac{2.28}{4.25} \times 100 = 53.74 \%

The thermal efficiency, \eta _{dual} = 53.78%

e) The mean effective pressure, p_m, is found as follows;

p_m = \frac{W}{v_1 - v_2} =\frac{2.28}{2.2 \times 10^{-3}} = 1038.25 \ kPa

The mean effective pressure = 1038.25 kPa.

3 0
4 years ago
PROBLEM IN PICTURE HELP ME DEAR GODDDDDD UGHHH NONONO I HAVE 2 MINUTES TO FINISH THIS ❕❗️❕❗️❗️❕❕❕❕❗️❕❕❗️❕❗️❗️❗️❕‼️‼️‼️‼️❗️‼️❗️
Elan Coil [88]
Thx :) so much :))))))
4 0
3 years ago
Read 2 more answers
You will create three classes, the first two being Student and LineAtOfficeHour. The instances of the first class defines a sing
White raven [17]

Answer:

Complete solution is given below:

Explanation:

//student class

class Student{

  private String firstname,lastname;

 

  //constructor

  Student(String first,String last){

      this.firstname=first;

      this.lastname=last;

  }

 

  //getters and setters

  public String getFirstname() {

      return firstname;

  }

  public void setFirstname(String firstname) {

      this.firstname = firstname;

  }

  public String getLastname() {

      return lastname;

  }

  public void setLastname(String lastname) {

      this.lastname = lastname;

  }

  //function to get the fullname of student

  public String fullName() {

      return this.firstname+" "+this.lastname;

  }

}

//class for line at office hour

class LineAtOfficeHour{

 

  private Student line[];

  private int N=0;

  private int back=0;

 

  //empty constructor

  LineAtOfficeHour() {

      line=new Student[5];

  }

  //parameterized constructor

  LineAtOfficeHour(Student st[]) {

      int i=0;

      line=new Student[5];

      while(i<st.length && i<5) {

          line[i]=st[i];

          i++;

      }

      this.N=i;

      this.back=i-1;

  }

  //function to check if line is empty or not

  public boolean isEmpty() {

      if(this.N==0)

          return true;

      else

          return false;

  }

  //function to check if line is full

  public boolean isFull() {

      if(this.N==5) {

          return true;

      }else

          return false;

  }

  ///function to get the size of line

  public int size() {

      return this.N;

  }

 

  //function to add a student to the line

  public void enterLine(Student s) {

      if(isFull())

          System.out.println("Line is full!!!!");

      else {

          line[++back]=s;

          this.N++;

      }

  }

  public Student seeTeacher() {

      Student result=null;

      if(this.N>=0) {

          result=line[0];

          int i=0;

          for(i=1;i<N;i++) {

              line[i-1]=line[i];

          }

          line[i-1]=null;

          this.N--;

          this.back--;

      }

     

     

      return result;

  }

  //function to print students in line

  public String whosInLine() {

      String result ="";

      for(int i=0;i<this.N;i++) {

          result+=line[i].fullName()+",";

      }

      return result;

  }

}

//driver method

public class TestLine {

  public static void main(String[] args) {

      LineAtOfficeHour list=new LineAtOfficeHour();

     

      if(list.isEmpty()) {

          System.out.println("Line is empty!!!!!!!!!");

      }

     

      Student s1[]=new Student[3];

      s1[0]=new Student("John","Smith");

      s1[1]=new Student("Sam","Zung");

      s1[2]=new Student("Peter","Louis");

      list=new LineAtOfficeHour(s1);

     

      if(list.isEmpty()) {

          System.out.println("Line is empty!!!!!!!!!");

      }else {

          System.out.println("Line is not empty.........");

      }

     

      System.out.println("Students in line: "+list.whosInLine());

     

      System.out.println("Student removed: "+list.seeTeacher().fullName());

     

      System.out.println("Students in line: "+list.whosInLine());

  }

}

6 0
4 years ago
A customer asks why rogue has a vc-turbo engine when turbo engines are for sports cars. What are two ways to respond?.
aniked [119]

Best-in-class gas engine 1 and torque 2 fuel economy and All-new engine to be assembled at Nissan's powertrain facility in Decherd, Tenn.

<h3>Rogue</h3>

Nissan has introduced an all-new Rogue for the 2021 model year, delivering high quality and customer satisfaction through its strong combination of design, safety and technology. Now, for 2022, Nissan is making its best-selling model more powerful, more fuel efficient and more fun to drive with a new 1.5-liter Variable Compression (VC) Turbo engine across the Rogue lineup.

With this information, we can conclude that the vc-turbo engine is a great advance for fuel economy.

Learn more about Nissan in brainly.com/question/24814294

7 0
3 years ago
Errors in the output voltage of an actual integrated circuit operational amplifier can be caused by : Select one:
natta225 [31]

Answer:

Option B

Explanation:

An operational amplifier usually has a high open loop gain of around 10^5 which allows a wide range get of feed back levels in order to achieve the desired performance so therefore a low open loop gain reduces the range feed back level thereby reducing the performance which can cause errors in the output voltage.

7 0
3 years ago
Other questions:
  • The dry unit weight of a soil sample is 14.8 kN/m3.
    12·1 answer
  • A 2-m3 rigid tank initially contains air at 100 kPa and 22°C. The tank is connected to a supply line through a valve. Air is flo
    14·1 answer
  • Plz fill these gaps.<br>thank u so much.<br>​
    11·1 answer
  • the oscillation of rod oa about o is defined by the relation θ= (3/pi)*(sin*pi*t), where theta and t are expressed in radians an
    8·1 answer
  • If we have silicon at 300K with 10 microns of p-type doping of 4.48*10^18/cc and 10 microns of n-type doping at 1000 times less
    7·1 answer
  • A spherical interplanetary probe of 0.5-m diameter contains electronics that dissipate 150 W. If the probe surface has an emissi
    11·1 answer
  • Where do the names of counterweight items originally come from
    7·2 answers
  • The in-situ dry density of a sand is 1.72Mg/m3. The maximum and minimum drydensities, determined by standard laboratory tests, a
    5·1 answer
  • The demand for Manufacturing jobs is O decreasing O increasing O slowly changing. O remaining constant.​
    6·2 answers
  • He is going ___ in the hot air ballon​
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!