Answer:
- The gravity does a work of - 117.6 Joules.
- The tension does not do work as the force is perpendicular to the direction of motion at any point in the trajectory.
Explanation:
The work done by the gravity simply is the difference in gravitational potential energy multiplied by -1:

where m is the mass of the ball, g is the acceleration due to gravity,
is the final height and
is the initial height.
So, if the radius is 2.00 m, then the difference of height will be 4 meters:



As the tension is perpendicular to the velocity of the ball, the force is always perpendicular to the direction of motion. So, the differential of work will be:

Answer:
Explanation:
Initial kinetic energy of M = 1/2 M vi²
let final velocity be vf
v² = u² + 2a s
vf² = vi² + 2 (F / M) x D
Kinetic energy
= 1/2 Mvf²
= 1/2 M ( vi² + 2 (F / M) x D
1/2 M vi² + FD
Ratio with initial value
1/2 M vi² + FD) / 1/2 M vi²
RK = 1 + FD / 2 M vi²
Answer:
0.0667 m
Explanation:
λ = wavelength of light = 400 nm = 400 x 10⁻⁹ m
D = screen distance = 2.5 m
d = slit width = 15 x 10⁻⁶ m
n = order = 1
θ = angle = ?
Using the equation
d Sinθ = n λ
(15 x 10⁻⁶) Sinθ = (1) (400 x 10⁻⁹)
Sinθ = 26.67 x 10⁻³
y = position of first minimum
Using the equation for small angles
tanθ = Sinθ = y/D
26.67 x 10⁻³ = y/2.5
y = 0.0667 m