Answer: C.
Explanation:
For a parallel-plate capacitor where the distance between the plates is d.
The capacitance is:
C = e*A/d
You can see that the distance is in the denominator, then if we double the distance, the capacitance halves.
Now, the stored energy can be written as:
E = (1/2)*Q^2/C
Now you can see that in this case, the capacitance is in the denominator, then we can rewrite this as:
E = (1/2)*Q^2*d/(e*A)
e is a constant, A is the area of the plates, that is also constant, and Q is the charge, that can not change because the capacitor is disconnected.
Then we can define:
K = (1/2)*Q^2/(e*A)
And now we can write the energy as:
E = K*d
Then the energy is proportional to the distance between the plates, this means that if we double the distance, we also double the energy.
Explanation:
uuubbv. very ecrcvtyfyhc g you f gg and you are the one to give me the chance for a little bit of time and effort into this is 6.0 and if
Answer:
Originally : Level = log I / I0
Currently: Level = 10 log I / I0
Level = 10 log 600 = 10 * 2.78 = 27.8
Note the term 1 bel = 10 decibels
Answer:
In both cases, energy will move from an area of higher temperature to an area of lower temperature. So, the energy from room-temperature air will move into the cold water, which warms the water.
Explanation:
The smaller body will have greater temperature change.
<h3><u>Explanation</u>:</h3>
Temperature is defined as the degree of hotness or coldness of a body. The relationship of the temperature with heat is described as
Q =m c dT.
Where Q is the heat content
m is the mass of body
c is the specific heat of body
dT is the temperature change of body.
Here the bodies are made up of same substance, so specific heat is same. The mass of bigger body is M and smaller body is m.
So the temperature change of the body will be dependent on the mass of the body. Heat loss by one body will be equal to heat gained by the other.
So M dT1 = mdT2.
So, M/m = dT2 / dT1.
So the the smaller body will be suffering higher temperature change.