Newton's second law of motion pertains to the behavior of objects for which all existing forces are not balanced. The second law states that the acceleration of an object is dependent upon two variables - the net force acting upon the object and the mass of the object. The acceleration of an object depends directly upon the net force acting upon the object, and inversely upon the mass of the object. As the force acting upon an object is increased, the acceleration of the object is increased. As the mass of an object is increased, the acceleration of the object is decreased.
2.0 meters The skateboarder has 2 forces acting upon him to slow him down. The forces are friction, and climbing against the gravitational acceleration. So let's calculate the magnitude of these forces to see how fast he's decelerated. The coefficient of kinetic friction is a multiplier to use against the normal force of the object. We can calculate the normal force by multiplying the mass of the object by the local gravitational acceleration and the cosine of the angle. So Df = 60 kg * 9.8 m/s^2 * cos(20°) * 0.30 Df = 60 kg * 9.8 m/s^2 * 0.939692621 * 0.30 Df = 60 kg * 9.8 m/s^2 * 0.939692621 * 0.30 Df = 165.7617783 kg*m/s^2 Df = 165.7617783 N
The second amount of force is that caused by gravitational acceleration while climbing. That is determine by the amount of height gained for every meter along the slope. We can calculate that using the sine of the angle. So
Dg = 60 kg * 9.8 m/s^2 * sin(20°)
Dg = 60 kg * 9.8 m/s^2 * 0.342020143
Dg = 201.1078443 kg*m/s^2
Dg = 201.1078443 N
So the amount of force decelerating the skateboarder is:
F = Df + Dg
F = 165.7617783 N + 201.1078443 N
F = 366.8696226 N
Now let's determine how much kinetic energy needs to be dissipated. The equation is
E = 0.5 MV^2
So we'll substitute the known values and calculate
E = 0.5 MV^2
E = 0.5* 60 kg * (5 m/s)^2
E = 0.5* 60 kg * 25 m^2/s^2
E = 750 kg*m^2/s^2
E = 750 J
Now let's divide the energy by the force.
750 kg*m^2/s^2 / 366.8696226 kg*m/s^2 = 2.04432298 m
Rounding to 2 significant figures gives a distance of 2.0 meters.
Answer:
A magnet
Explanation:
is an object that can attract some metals like iron
Answer:
Energy = Power × Time
We make Time the subject in this equation
Time = Energy ÷ Power
Time = 10000 ÷ 400
Time = 25seconds