U have an arithmetic sequence with a common difference of 3
A(n) = -4 + (n-1) * 3
Answer:
13.4%
Step-by-step explanation:
Use binomial probability:
P = nCr p^r q^(n-r)
where n is the number of trials,
r is the number of successes,
p is the probability of success,
and q is the probability of failure (1-p).
Here, n = 16, r = 2, p = 0.25, and q = 0.75.
P = ₁₆C₂ (0.25)² (0.75)¹⁶⁻²
P = 120 (0.25)² (0.75)¹⁴
P = 0.134
There is a 13.4% probability that exactly 2 students will withdraw.
Answer:
Yes, an arrow can be drawn from 10.3 so the relation is a function.
Step-by-step explanation:
Assuming the diagram on the left is the domain(the inputs) and the diagram on the right is the range(the outputs), yes, an arrow can be drawn from 10.3 and the relation will be a function.
The only time something isn't a function is if two different outputs had the same input. However, it's okay for two different inputs to have the same output.
In this problem, 10.3 is an input. If you drew an arrow from 10.3 to one of the values on the right, 10.3 would end up sharing an output with another input. This is allowed, and the relation would be classified as a function.
However, if you drew multiple arrows from 10.3 to different values on the right, then the relation would no longer be a function because 10.3, a single input, would have multiple outputs.
Answer:
B: (2, -1)
Step-by-step explanation:
1) First isolate the y in both equations
2) Set the equations equal to each other
3) Solve for x (you should get 2 and 5)
4) Insert the x values back in to get your y values
5) You should have gotten (2, -1) and (5, 2)
These are your two answers, but the question is only asking for one solution and (5,2) isn't one of the options, so it has to be (2,-1).