Answer:
It is (1/5)th as much.
Explanation:
If we apply the equation
F = G*m*M / r²
where
m = mass of a man
M₀ = mass of the planet Driff
M = mass of the Earth
r₀ = radius of the planet Driff
r = radius of the Earth
G = The gravitational constant
F = The gravitational force on the Earth
F₀ = The gravitational force on the planet Driff
g = the gravitational acceleration on the surface of the earth
g₀ = the gravitational acceleration on the surface of the planet Driff
we have
F₀ = G*m*M₀ / r₀² = G*m*(5*M) / (5*r)²
⇒ F₀ = G*m*M / (5*r²) = (1/5)*F
If
F₀ = (1/5)*F
then
W₀ = (1/5)*W ⇒ m*g₀ = (1/5)*m*g ⇒ g₀ = (1/5)*g
It is (1/5)th as much.
Answer:
vB = 15.4 m/s
Explanation:
Principle of conservation of energy:
Because there is no friction the mechanical energy is conserve
ΔE = 0
ΔE : mechanical energy change (J)
K : Kinetic energy (J)
U: Potential energy (J)
K = (1/2)mv²
U = m*g*h
Where :
m: mass (kg)
v : speed (m/s)
h : hight (m)
Ef - Ei = 0
(K+U)final - (K+U)initial =0
(K+U)final = (K+U)initial
((1/2)mv²+m*g*h)final = ((1/2)mv²+m*g*h)initial , We divided by m both sides of the equation:
((1/2)vB² + g*hB = (1/2 )vA²+ g*hA
(1/2) (vB)² + (9.8)*(14.7) = 0 + (9.8)(26.8 )
(1/2) (vB)² = (9.8)(26.8 ) - (9.8)*(14.7)
(vB)² = (2)(9.8)(26.8 - 14.7)
(vB)² = 237.16
vB = 15.4 m/s : speed of the cart at B
To get the best possible answer. (sorry if im wrong)
I think it’s the first option