Answer:

Explanation:
When the block is displaced by x units
F= spring force
two springs are connected parallel

Writing Newtons second law, F = ma


a= x" ( differentiating x w.r.t time twice)

this the standard form of equation of oscillation spring mass system
This is the differential equation, x'' means that double differentiation of x , i.e, x'' is acceleration
since, Period 
therefore,

☁️ Answer ☁️
annyeonghaseyo!
Your answer is:
True.
Several simple machines change the direction of the applied force. These include lever, fulcrum and the pulley.
Hope it helps.
Have a nice day hyung/noona!~  ̄▽ ̄❤️
Answer:
a) m =1 θ = sin⁻¹ λ / d, m = 2 θ = sin⁻¹ ( λ / 2d)
, c) m = 3
Explanation:
a) In the interference phenomenon the maxima are given by the expression
d sin θ = m λ
the maximum for m = 1 is at the angle
θ = sin⁻¹ λ / d
the second maximum m = 2
θ = sin⁻¹ ( λ / 2d)
the third maximum m = 3
θ = sin⁻¹ ( λ / 3d)
the fourth maximum m = 4
θ = sin⁻¹ ( λ / 4d)
b) If we take into account the effect of diffraction, the intensity of the maximums is modulated by the envelope of the diffraction of each slit.
I = I₀ cos² (Ф) (sin x / x)²
Ф = π d sin θ /λ
x = pi a sin θ /λ
where a is the width of the slits
with the values of part a are introduced in the expression and we can calculate intensity of each maximum
c) The interference phenomenon gives us maximums of equal intensity and is modulated by the diffraction phenomenon that presents a minimum, when the interference reaches this minimum and is no longer present
maximum interference d sin θ = m λ
first diffraction minimum a sin θ = λ
we divide the two expressions
d / a = m
In our case
3a / a = m
m = 3
order three is no longer visible
Answer:
a)
b)
c)
d)
e)
Explanation:
Given that
d = 2 cm
V = 200 V

We know that
F = E q
F = m a
E = V/d
So
m a = q .V/d b
---------1
The mass of electron

The charge on electron

Now by putting the all values in equation 1


We know that
a)
s = 0.1 cm


b)
s = 0.5 cm


c)
s = 1 cm


d)
s = 1.5 cm


e)
s = 2 cm

