Answer:
Explanation:
ignoring air resistance, the kinetic energy at water impact will equal the potential energy converted
½mv² = mgh
v = √(2gh)
v = √(2(9.81)2.1) = 6.4188... m/s
after impact, an impulse will result in a change of momentum.
There is a downward impulse due to gravity equal to the weight of the stone and an upward average force due to water resistance and buoyancy force.
FΔt = mΔv
(F - mg)Δt = m(vf - vi)
(F - mg) = m(vf - vi)/Δt
F = m(vf - vi)/Δt + mg
F = m((vf - vi)/Δt + g)
F = 1.05(((½(-6.4188) - -6.4188)/ 1.83) + 9.81)
F = 12.14198...
F = 12.1 N
About 21c because it also depends on the weather outside
Answer:
Explanation:
1 g is 9.8 m/s^2 the problem wants the results in km/h so we'll fix that really quick.
9.8 m/s^2 (1 km/1000m)(60 sec/1 min)^2(60 min/1 hour)^2 = 127008 km/hour^2
Now, I'm assuming the ship is starting from rest, and hopefully you know your physics equations. We are going to use vf = vi + at. Everything is just given, or we can assume, so I'll just solve.
vf = vi + at
vf = 0 + 127008 km/hour^2 * 24 hours
vf = 3,048,192 km/hour
If there's anything that doesn't make sense let me know.
Answer:
The distance of the object placed on the principal axis from the concave mirror.
Explanation:
In a concave mirror, the nature of the image formed formed by the object placed in front of the mirror depends on the position of the object placed in from of the mirror. It all depends on the distance between the mirror and the object placed on the principal axis.
The closer the object is to the lens, the more larger or magnified the image formed will be. For example an object placed between the focal point and the pole of a concave produces a much larger image than an object placed beyond the centre of curvature of such mirror.