Answer:
0.37 m/s to the left
Explanation:
Momentum is conserved. Initial momentum = final momentum.
m₁ u₁ + m₂ u₂ = m₁ v₁ + m₂ v₂
Initially, both the fisherman/boat and the package are at rest.
0 = m₁ v₁ + m₂ v₂
Plugging in values and solving:
0 = (82 kg + 112 kg) v + (15 kg) (4.8 m/s)
v = -0.37 m/s
The boat's velocity is 0.37 m/s to the left.
Answer:
The positive end of battery 1 touching the negative end of battery 2 and wires connecting the negative of battery 1 to the light light bulb and the positive of battery 2 to the light bulb.
Explanation:
Answer:
t = 1.05 s
Explanation:
Given,
The distance between your vehicle and car, 100 ft
The constant speed of your vehicle, u = 95 ft/s
Since, the velocity is constant, a =0
If the car stopped suddenly, time left for you to hit the brake, t = ?
Using the second equation of motion,
S = ut + ½ at²
Substituting the given values in the equation
100 = 95 x t
t = 100/95
= 1.05 s
Hence, the time left for you to hit the brakes and stop before rear ending them, t = 1.05 s
Answer:
.7917 m/s
Explanation:
This is a conservation of momentum question. You have an object initially at rest (cart) so that object is initially at 0 momentum. Indiana Jones is 83.5 kg and running 3.75 m/s so he starts with a momentum of 313.125 kg * m/s because momentum is equal to mass * velocity. Once the person jumps in the cart, the cart and the person can be considered one object and by conservation of momentum, the momentum of the Indiana-cart system is equal to 313.125 kg * m/s. By that, we can set that momentum equal to the combined mass * joint velocity. So 313.125 = (83.5kg + 312kg) * joint velocity. Then just solve for the velocity. The answer should be smaller than the intial velocity of the person of 3.75 m/s because the mine cart is HUGE at 312kg.