Nuclear fusion in the sun involves hydrogen (H) atoms
combining to form helium (He). A student claims that since the atmosphere
contains hydrogen, any fusion reaction on Earth would result in an uncontrolled
chain reaction. What is wrong in the student’s reasoning is that the uncontrolled
chain reactions can only happen during nuclear fission.
Answer: c. Matter and energy are conserved in chemical reactions.
Explanation:
According to the law of conservation of matter, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side.
For every chemical reaction, the law of conservation of energy is applicable which states that the energy of the system remains conserved. Energy can neither be created nor destroyed. It can be transformed from one form to another.
▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓
Hydrogen ion reacts with zinc to produce
gas
▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓
The computation for molarity is:
(x) (0.175 L) = 0.0358 g / 598 g/mol
x = 0.000342093 M
Whereas the osmotic pressure calculation:
pi = iMRT
pi = (1) (0.000342093 mol/L) (0.08206 L atm / mol K) (298 K)
pi = 0.0083655 atm
Converting the answer to torr, will give us:
0.0083655 atm times (760 torr/atm) = 6.35778 torr
which rounds off to 6.36 torr
Answer:
8.1 × 10² g
Explanation:
Step 1: Write the balanced equation
2 C₅₇H₁₁₀O₆ + 163 O₂ ⇒ 114 CO₂ + 110 H₂O
Step 2: Convert 1.6 lb of C₅₇H₁₁₀O₆ to g
We will use the conversion factor 1 lb = 453.592 g.
1.6 lb × 453.592 g/1 lb = 7.3 × 10² g
Step 3: Calculate the moles corresponding to 7.3 × 10² g of C₅₇H₁₁₀O₆
The molar mass of C₅₇H₁₁₀O₆ is 890.83 g/mol.
7.3 × 10² g × 1 mol/890.83 g = 0.82 mol
Step 4: Calculate the moles of water produced from 0.82 moles of C₅₇H₁₁₀O₆
The molar ratio of C₅₇H₁₁₀O₆ to H₂O is 2:110. The moles of H₂O produced are 110/2 × 0.82 mol = 45 mol
Step 5: Calculate the mass corresponding to 45 moles of H₂O
The molar mass of H₂O is 18.02 g/mol.
45 mol × 18.02 g/mol = 8.1 × 10² g