Tellurium
Polonium
Livermorium
Answer:
Explanation:
angular momentum of the putty about the point of rotation
= mvR where m is mass , v is velocity of the putty and R is perpendicular distance between line of velocity and point of rotation .
= .045 x 4.23 x 2/3 x .95 cos46
= .0837 units
moment of inertia of rod = ml² / 3 , m is mass of rod and l is length
= 2.95 x .95² / 3
I₁ = .8874 units
moment of inertia of rod + putty
I₁ + mr²
m is mass of putty and r is distance where it sticks
I₂ = .8874 + .045 x (2 x .95 / 3)²
I₂ = .905
Applying conservation of angular momentum
angular momentum of putty = final angular momentum of rod+ putty
.0837 = .905 ω
ω is final angular velocity of rod + putty
ω = .092 rad /s .
The magnet (south pole of the magnet) has magnetized the right side of the block.
<h3>
Direction of electric field in the magnetic material</h3>
The direction of electric field of the atom of the magnetic material is unpolarized.
From the diagram in the image, the right hand side of the magnetic material is being attracted to south pole of the magnet.
Thus, we can conclude that, the magnet has magnetized the right side of the block.
Learn more about magnetic material here: brainly.com/question/22074447
#SPJ1